Appendix 1
The SAFE (Stream-Aquifer Flow Exchange) dimensionless conductance (under saturated hydraulic connection) г
For each side of the river, under symmetry of head on both sides, the seepage discharge, Q, is given by the expression: (1) where K is the aquifer hydraulic conductivity in the vicinity of the river, L is the longitudinal length of the river reach and is the one-sided (SAFE) dimensionless conductance [1-4], is the head in the river and is the head at the far distance. Briefly, that conductance is obtained analytically as an integrated form of Darcy’s law through the streamtube bounded by the wetted perimeter of the river on one hand and on the other hand the vertical line across the aquifer located at the “far (enough) distance” from the bank of the river. It is derived mathematically as the stream function, difference, between the center of the cross-section and the top of the side of the cross-section divided by the potential, difference, on the perimeter of the cross-section and that at the far distance vertical boundary, Г = ∆ψ / ∆φ. One selects for ∆ψ arbitrarily the value 1 and one determines analytically the value of ∆φ. 

If one assumed full penetration of the river, (that is when the bottom of the river cross-section sits on the impervious bottom of the aquifer) having chosen for the “far” distance twice the aquifer thickness, so that by that distance the Dupuit-Forchheimer assumption will hold, the expression for would be:
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and thus of value 0.5 where ST in this case is the saturated thickness of the aquifer at the bank of the fully penetrating river [1]. This 0.5 value is the maximum value that г can take under a saturated connection. For the case of Figure 1, where the river is penetrating only slightly, the value of г is 0.386 (Miracapillo and Morel-Seytoux, 2014). The value of г is a function of: 

(a) the normalized wetted perimeter of the stream, 
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 (3) assuming a rectangular cross-section, where Wp is the wetted perimeter, D is the current water table thickness measured from the aquifer bottom, H is the depth of water in the river and 2B is the river bottom width and (b) the degree of penetration of the stream, 
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For the sake of computational efficiency our emphasis has been to use analytical techniques to determine the value of. It has been shown conclusively [2,3] that the numerical models provide the exact answers only by using a significantly refined grid. 

Appendix 2
 A typical estimation of the flow exchange in most groundwater models.
 Due to the difficulty of considering the vertical component of flow under a riverbed there has been a tendency in numerical models to deal with only one numerical vertical cell below the river and to incorporate a clogging layer in the riverbed. Essentially all of the head loss below the river is assumed to take place through the clogging layer. Consider a river with a rectangular cross-section of width W (= 2B), a depth in the river of H, an artificial (or real) clogging layer of thickness and a hydraulic conductivity. The aquifer thickness from the bottom of the aquifer to the top of the clogging layer is D.

The discharge (per unit length of the river reach) through the right half side of the clogging layer using Darcy’s law is: 
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Where hbcl is the head just below the clogging layer. Since there is only one calculation layer it is also the head in the center of the cell. There is no vertical gradient of head in the layer (Dupuit-Forchheimer assumption). Note that the vertical sides of the river that allow for a depth H (by preventing it from spilling) have been folded flat so that the entire flow through the clogging layer is vertical. Let G be the width of the cell that includes the river (the river cell) and with a depth equal to the aquifer thickness. In other words it is both a single geologic and calculation layer. The distance from the right bank of the river to the boundary of the river cell and the next adjacent cell is thus 
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. If we want the distance from the right bank to the center of the adjacent cell to be 2D (the “standard far distance”) or more generally, 
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 then the distance from the boundary of the two cells to the center of the adjacent cell,
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 There the head is prescribed as hfar and we consider a steady-state condition. Note that the size of the adjacent cell which is 2 χ does not have to be G. The size of the adjacent cell is: 
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 In most applications the cells are uniform and GA = G. The relation between G and ∆ is thus: ∆ = G – 2D - B and G = 2D + B + ∆. Since ∆ must be positive the minimum value of G is 2D + B. 

The discharge transmitted horizontally to the adjacent cell is given by the expression: 
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 (2) which is a standard Finite Difference formulation. Isolating hbcl on the right hand side of both (1) and (2) we obtain: 
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Adding (3) and (4) eliminates with the result:
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Multiplying both sides by 
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Which defines the numerical model’s equivalent dimensionless conductance as:
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Note that this value will always be less than 0.5, which corresponds to the assumption of full penetration. By appropriate selection of the parameters ecl and Kcl one can make гnum match the exact г∆. Equating гnum with г∆ will yield the equivalent “leakance” 
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 The relation between г for the standard distance 2D and г∆ for the greater far distance 2D + ∆ is: 
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 Most numerical models are aware that the introduction of an artificial clogging layer is an empirical remedy to account for the turning resistance to flow and the convergence-divergence of the streamtubes. For example the MODFLOW 1988 manual does comment that the river scenario could also be conceptualized as having no clogging layer and thus the conductance term would then need to represent other factors. The manual mentions that the MODFLOW conductance is a simplistic 1D term attempting to represent 2D/3D factors in the no-clogging case. It is that latter part that practitioners seem to forget as they end up focusing on a “streambed”, even if they have large cells and no clear streambed exists. MODFLOW doesn’t necessarily require the river to be conceptualized with a clogging layer even though, it seems, everyone does conceptualize it that way. On the other hand the manual completely leaves open how to define a conductance in the absence of a clogging layer. The need for the SAFE dimensionless conductance, г, comes in part from that absence.

It is also quite common in practice to ignore the bank height, H, and assume that its contribution is small relative to the width, or to include H with the river’s width in a flat “wetted perimeter” (the H folded flat). The conceptualization of the H being flattened is a correct depiction of how MODFLOW’s river is commonly handled.

If no clogging layer is present in the system one can use the standard finite difference formulation to estimate the vertical flux between the river and the center of the cell below. A similar analysis leads to the result. It is obtained most rapidly from Equation. (11a) by making 
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Figure 2 displays a comparison of and the exact as a function of the normalized wetted perimeter 
[image: image24.emf]


2B
D










2B

D

 in the case of no clogging and no penetration.

Appendix 3
The cells are square with side 1000. Thus the trench is now divided into three cells. The length of each trench segment in each cell is 1000 and the width 10. All other parameters and boundary conditions remain the same as for the first run.

The river leakage into cell (3, 3) and by symmetry into cell (5, 3) was 51,352 The river leakage into cell (4, 3) was 31,903. For the cell-to-cell discharges it was: from (3, 3) to (2, 3): 19,885; from (3, 3) to (3, 2): 16,220 from (4, 3) to (4, 2): 14,979; from (4, 3) to (3, 3): 972.46

By symmetry the total lateral (i.e. in the E-W direction) discharge is thus 2x (2x16, 220 + 14,979) = 94,838 whereas the longitudinal (i.e. N-S direction) discharge is: 2x19,885 = 39,778

The total discharge is thus 134,616. The total leakage from the river is: 51,352x2 + 31,903= 134,607. The ratio of seepage to the NS versus EW is: 0.42. On sees the influence of using different cells to include the trench versus using only one cell in which case the ratio was 1.0.
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