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ABSTRACT

Autoimmune diseases represent a set of disorders of indefinite etiology. In such category
of immune disorders, the immune system of a genetically susceptible individual encounters a
potentially pathogenic external trigger that initiates the spark for breakdown of tolerance to
self antigens provoking a self directed immune attack. The immune-pathogenic constructs in
many of the recognized autoimmune diseases appear quite heterogeneous, certain diseases are
predominantly B cell driven while others are primarily T cell driven and many undoubtedly
represent a combination of both. The knowledge of the exact nature of the initial drive in these
diseases is crucial for designing an effective therapeutic strategy. The role of B cells in adaptive
immunity encompasses a vast array of immune-stimulatory as well as immune- regulatory
responses passing from the secretion of autoantibodies to autoantigen presentation, reciprocal
interactions with the T cells, secretion of pro-/anti-inflammatory cytokines and the generation
of ectopic germinal centers with chronic inflammation. A hyperactive B cell status with defective
regulatory functions can therefore facilitate break down of immune tolerance. A large body of
experimental evidence validates the potential effects of B-cell depletion therapies in multiple
autoimmune diseases. B cell depletion therapeutic strategy has been successfully employed in
a number of autoimmune diseases. Many of these diseases are classified as typically of B-cell in
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origin including systemic lupus erythematosus (SLE), idiopathic autoimmune thrombocytopenia,
dermatomyositis and vasculitis, with others being classified as T cell driven diseases in which B

lymphocytes are considered as prime movers like rheumatoid arthritis [1-7].
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THE EFFECTOR ROLE OF B LYMPHOCYTES

The B lymphocytes possess a number of effector functions that have been proven to stand a
pivotal role in the maintenance of immune competence and homeostasis. They feature the humoral
arm of the immune response by being the initiator and moderator of antibody dependent cell
mediated responses. At the same time the B cells are capable of playing an antibody independent
role providing synergy to T cell mediated arm of the immune response.
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Figure 1: The effector role of B lymphocytes in the immune response.
BCR= B cell receptor, FCR= F C Gamma receptor, Ag= antigen, M= macrophage, D= dendritic cells, AIDCC= antibody independent
cell mediated cytotoxicity, APCs= antigen presenting cells, ADCC= antibody dependent cellular cytotoxicity, CDCC= complement
dependent cellular cytotoxicity.
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Antibody Dependent Cell Mediated Cytotoxicity ADCC

The initiation of the humoral response involves distinct sequential phases of B cell differentiation
and activation. Naive B cells bear millions of distinct surface antigen-specific receptors. The initial
antigen recognition phase starts when clusters of the mature B lymphocytes expressing BCR (antigen
specific [gM and IgD surface immunoglobulins) encounter their cognate antigen, this binding sparks
signals that lead to further clustering (up-regulation) of antigen receptors with stimulation of B
lymphocyte activation. B cell activation ends up by the subsequent formation of effector antibody
secreting B cells and memory B cells. The antigen antibody binding activates the complement
pathway with complement fixation, chemotaxis, phagocytosis and the formation of immune complex
deposits in the tissues. In situations where the B cell surface receptor fails to encounter its cognate
antigen, the B cell undergoes apoptosis. The majority of the antibody producing B lymphocytes
stay in the circulation targeting the provoking antigen, whilst some of these antibody producing
plasma cells migrate to the bone marrow and remain in-situ for several years providing a long
lived source of antibodies following clearance of the provoking antigen. Bone marrow resident
antibody producing B lymphocytes contribute to almost 50% of the immunoglobulins pooling into
the circulation upon antigenic stimulation. Pre-activation of the circulating B lymphocytes via their
respective cognate antigen results in up-regulation of the co-stimulatory molecules a prerequisite
for facilitation of antigen uptake and successful antigen presentation for immune stimulation of the
T cell responses [8,9].

The Antibody Independent Signaling Pathway

The antibody independent drive of B lymphocytes is another cornerstone in immune
dysregulation in the territory of autoimmune diseases. The antibody independent role has been
highlighted by some evidences in experimental and human studies: 1) In mouse models of lupus,
the B cells were found critical to the development of disease even when they were unable to secrete
autoantibodies. 2) The efficacy of B-cell depletion was found to be dissociated from changes in
levels of autoantibodies in some autoimmune diseases; 3) The most compelling efficacy data for
B-cell depletion occurs in diseases that were traditionally viewed as T-cell driven like Rheumatoid
Arthritis and Multiple Sclerosis. The antibody independent signaling pathway encompasses a
network of co- stimulatory events involved in programming of immune dysregulation passing
from antigen presentation to cytokine production and T-B lymphocytes co-stimulation creating a
positive feedback route [9-19].

Reciprocal T-B cell Co-Stimulation
The activation process of the T lymphocytes requires two signals:

A. An initial signal that involves engagement of the TCR on CD4 T helper cells to specific
antigenic peptides presented in an MHC restriction response pattern on APCs. Engagement of the
MHC-peptide complex to TCR on CD4 T-helper cells stimulates cytokine release with the resultant
reciprocal stimulation of B cell proliferation and differentiation into plasma cells.
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B. Second, synergistic co-stimulatory signals that sustain and integrate TCR signaling
arranging for optimal T cell proliferation and differentiation.

Reciprocal T-B Co-stimulation: The definition of co-stimulation encompasses a series of
immune events starting by an initial ligand-receptor interaction at the surfaces of a responder
lymphocyte followed by the action of an “accessory” cell which is the antigen presenting cell APC
represented by the dendritic cells, the activated macrophages acting as the first line APC with the
activated B lymphocytes featuring the more specific activation signal for the T cells. Following the
binding of the antigenic epitopes to the Ig receptors on the surface of B cells, the antigenic proteins
gets internalized into the endosomal vesicles where they get processed and their peptides get
presented to helper T cells at the surface in corporation with MHC Il molecules. Thus activation of
B lymphocytes sparks more antigen specific co-stimulatory signals to the primed T lymphocytes
for their further activation. The memory B cells (previously described as poor APC) recently
described as CD19-CD27-CD80. B cells are currently regarded as an effective rapid responder
being capable of initiating immediate and robust memory effector responses potentially capable
of T cell stimulation [20].

Such reciprocal interactions require the presence of the so-called co-stimulatory molecules.
These are surface molecules that modulate cell to cell signaling and they have the capacity to either
up or down-regulate immune responses by stimulating release of a number of pro-inflammatory
or regulatory cytokines. The CD28 receptor is one of the best characterized T cell co-stimulatory
molecules, which binds to two costimulatory molecules, B7-1 (CD80) and B7-2 (CD86). CD28 is
constitutively expressed on 95% of CD4+ T cells and 50% of CD8+ T cells in humans. B7-1 and B7-2
are expressed mainly on APCs, including dendritic cells, macrophages, and B cells. The expression
of B7-1 and B7-2 on APCs is enhanced by the presence of microbes and by cytokines that are
produced in response to microbes. This regulated expression of B7 co-stimulators ensures that T

cells respond best only when necessary - that is, when faced with pathogens [21].
THE B LYMPHOCYTES AND SELF TOLERANCE

Immune Tolerance refers to reduction or absolute inhibition of the individuals’ ability to
develop a reactive immune response to an antigen (self/foreign). Immune tolerance can be
natural or acquired. Natural Immune Self-tolerance aims to abort any attempt at immune attack

of self-antigens [22].

Tolerance starts in the bone marrow and is perfected by the peripheral lymphoid tissue. The
currently identified mechanisms involved in the induction and maintenance of this tolerance

include: clonal deletion/anergy, receptor editing and receptor down-modulation [23,24].

Clonal Deletion describes the process of maturational arrest and follicular exclusion of auto-

reactive developing B cell population leading to premature death.

Along their course of development, the B lymphocytes encounter a number of checkpoints at
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which the auto-reactive ones are effectively eliminated to preserve natural immune tolerance.
Following the elimination of auto-reactive B cells by the bone marrow, the immature B cells migrate
to the spleen, where they may encounter autoantigen not present in the bone marrow. B cells
with high avidity to autoantigen are deleted (clonal deletion), while those having low to very-low
avidity interactions progress to clonal anergy or ignorance, respectively. Anergy is defined as the
inability of chronically stimulated auto-reactive cells to respond to further antigenic stimulation.

In contrast to clonal deletion and anergy there comes the clonal selection. In such case an
encounter with a foreign antigen triggers the migration of the B lymphocytes to the T-cell zone
of the germinal centers where they get activated by antigen-specific CD4+ T cells. During the
ensuing rapid proliferation phase B cells undergo somatic hyper-mutation predominantly of
the variable regions of their immunoglobulins. Only those B cells that express antibodies with
increased affinity are selected (clonal selection) to survive and exit the germinal centers as
antibody producing plasma cells or memory cells [25-33].

Receptor editing is a process of ongoing gene rearrangement in a BCR that already has a
productive heavy or light chain gene rearrangement, successful editing converts the specificity of
a self-reactive antibody into a non-self-reactive antibody. This step takes place within the bone
marrow during early stages of B cell development [34].

Receptor Down-regulation involves down-regulation of the surface Ig D and Ig M antibody
on the surface of developing B lymphocytes decreasing their avidity to autoantigens. Receptor
dilution is another mechanism that aims at decreasing surface antibody expression either partially
or totally via intracellular sequestration of the auto-reactive receptors and co-expression of two
light chains [28,35].

The altered expression and/or down regulation of certain B cell surface receptor molecules
have been associated with breakdown of immune tolerance like FcYRIIb and complement
receptor (CR) 1 (CD35) which is a powerful inhibitor of both the classical and the alternative
pathway C3- and C5-convertases, due to its decay accelerating capacity and co-factor activity for
C3b and C4b cleavage [36].

B CELL ROUTES OF IMMUNE-STIMULATION AND AUTOIMMUNITY

The initiation and perpetuation of an autoimmune response proved to be clearly multifactorial,
while the breakdown of tolerance initiates the spark, the intensity of the response depends upon
other variables including, the number of antigen presenting cells, the number and activity of
regulatory T cells and regulatory B cells, the nature and amount of antigenic peptides generated,

the intensity of the immune complex deposits and the presence of co-stimulatory signals.

The exact trigger of B cell hyperactive immune status phenomenon remains undefined.
Theories include: (a) intrinsic hyper-reactivity leading to polyclonal B-cell activation with

disturbed activation thresholds and ineffective negative selection, (b) lack of immune-regulatory
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functions, (c) secondary effects of an overactive inflammatory environment, such as overactive
germinal center and ectopic follicular activity, and/or (d) disturbed cytokine production by non-B
immune cells.

B Lymphocytes and the Breakdown of Self Tolerance

Breakdown of tolerance represents the principal drive towards self-immune attack. Evidences
of defective tolerance have been illustrated in a variety of ARDs like rheumatoid arthritis, systemic
lupus erythematosus, Sjogren’s syndrome and vasculitis.

The etiology appears to be multifactorial with a number of potential triggers mostly genetic
alterations (mutations) being proposed, some of these mutations had been identified in
experimental models only while others displayed similar findings in human disease [37-39].
Identified forms of some genetic mutations include:

(1) Impaired negative selection at the immature B cells stage: Experimental studies have
shown that mutations located within the Slel locus in mice impaired negative selection of auto-
reactive B cells at the immature B-cell stage with subsequent breakdown of tolerance [40].

(2) Increased B-cell signaling by overexpression of BCR signal-enhancing molecules or down-
regulation/deficiency of molecules inhibiting BCR signaling: CD19 is a B-cell surface molecule
that decreases the threshold for BCR stimulation. Experimental studies have demonstrated an
association between the overexpression of CD19 and the increase in the levels of serum antibodies
and B-cell activation in mice. A process that is reversed after loss of CD19 [41,42].

Deficiency of molecules that inhibit BCR-signaling, such as SHP-1, Lyn, or FcRIIB, enhances
B-cell signaling and provokes autoimmune diseases in experimental animals. Similar findings
have been illustrated in humans where the B cells from patients with lupus were found to express
lower levels of FcRIIB on their surface due to polymorphisms in their FcRIIB promoter or the
receptor itself [43-48].

(3) Somatic Hyper-mutations: Under normal circumstances the autoimmune B cells may
either not receive necessary survival signals or be eliminated. During affinity maturation the
massive somatic hyper-mutations can also cause the inadvertent development of auto-reactive
immunoglobulins and accumulation of autoreactive B cells as reported in ARDs [49].

(4) Impaired Apoptosis of auto-reactive B cells: B-cell activation factor (BAFF) and
its’ homologue APRIL are B-cell survival factors. Experimental studies demonstrated that
overexpression of BAFF was associated by expansion of peripheral B cell compartments with
higher autoantibody levels and the development of a lupus-like disease in the animals [28].
Elevated serum levels of BAFF have been found in patients with rheumatoid arthritis, systemic
lupus erythematosus, and primary Sjorgren’s syndrome. These observations make BAFF a
potential target for therapy. Neutralization of BAFF was shown to be associated with loss of
mature B cells and reduced symptoms of autoimmune diseases in animal models [50-53].
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BCR on B Cells

The BCR plays a pivotal role in maintenance as well as breakdown of tolerance. The antigen
specific BCR-mediated uptake is 10-100 folds more efficient than pinocytosis which enables the
B lymphocytes to function efficiently as APC even at low antigen concentrations. This Ag specific
receptor molecule has the potential to boost or shield certain protein determinants from the
proteolytic attack in endocytic compartments to modulate antigen processing and thereby the
nature of MHC-displayed T-cell determinants. The binding of certain autoantigens to the BCR
on immature B cells might induce apoptosis, receptor editing, or developmental arrest on one
hand. On the other hand, the binding of BCRs to self-antigens can result in ineffective negative
selection with positive selection of auto-reactive B cell population promoting their MHC restricted
presentation to T cells facilitating breakdown of immune tolerance and provoking autoimmunity.
Interestingly, experimental studies have illustrated that conditional ablation of the BCR might
result in rapid B cell death. Incorporation of BCRs with auto-reactive potential into the memory
compartment represents another route by which the BCR predisposes to autoimmune disease.
Such memory B cells are high affinity, long-lived B cells that can rapidly differentiate into Ab-
forming cells (AFC). They produce Abs of the stable IgG isotypes, they are not easily tolerated and
recently proven to play a principal role in self-directed immune responses [54-57].

Formation of Ectopic Germinal Centers

B cells aid in the de novo generation of ectopic germinal centers (GCs) within inflamed tissues
that can be observed during periods of chronic inflammation. These ectopic structures are
probably not a unique disease-specific occurrence, but a consequence of chronic inflammation.
Activated T and B cells that infiltrate the site of chronic inflammation express membrane-
bound lymphotoxin aalfp2 (LTaalPp2). High levels of LTaalBB2 eventually promote the
differentiation of resident stromal cells into follicular dendritic cells (FDCs) and the development
of ectopic GCs. These structures are similar to the GCs of secondary lymphoid organs and have been
described in systemic lupus erythematosus, Hashimoto’s thyroiditis, Graves’ disease, rheumatoid
arthritis, Sjogren’ssyndrome. The function and potential pathogenic role of ectopically formed
lymphoid structures within inflamed tissues remains unclear. However, plasma cells residing
within the ectopic GCs secrete autoantibodies making it plausible that ectopic GCs have a role in
the maintenance of immunepathology [58-61].

B-CELL DEPLETION

The B lymphocytes pass into multiple developmental (transitional) stages with variable
potentials ending up by the formation of mature B cells and antibody producing plasma cells.
During their maturation B cells undergo two key processes: the generation of functional Ag-

specific receptors and the selection of lymphocytes that express useful Ag receptors.

B-lymphocyte development, which takes 2 to 3 days, requires the concerted action of a network
of cytokines and transcription factors that positively and negatively regulate gene expression.
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Each transitional stage is marked by specific surface molecules, some of these molecules stand
a promising interventional target in the B cell depletion strategy, for example the germinal Center
B cells are denoted as IgD-, CD38++, CD10+ and CD27++ whereas, the splenic marginal zone B
lymphocytes are typically CD27+, CD21++, CD23+/-, CD1c+ and IgD- [62-63].

Table 1: The different stages of B cell maturation and their surface markers.

Marker Immature Transitional Stages Naive . CD27+ Memory B cells
B cells T1 T2 T3 Bcells  Un-switched Switched Plasma Cells

CD27 - - - - - + + High
CD19 + + + + + + + Low
CD10 + + +- -+ - - - +-
CD24 +++ +++ ++ + + ++ ++ -
IgD - + ++ ++ ++ + - -
IgM ++ +++ ++ + + + - -
R123 + + + Int - + + +
CD38 +++ +++ ++ + + low low high

B cell depletion is a process directed at either elimination of B cell by arresting its’ development,
suppression of survival. The B cell depletion theories established a novel therapeutic strategy not
only in B cell mediated ARDs but also in T cell mediated diseases in which the B cells act as prime
movers [62-63].

Potential Targets for B Cell Depletion Strategy

The B-cell targeted therapy can be categorized into four main classes: a- neutralization of
survival factors BAFF and APRI, b- killing of B cells using monoclonal antibodies directed to CD19,
CD20,and CD22, c- induction of apoptosis using reagents targeting the BCR itself or BCR associated
transmembrane signaling proteins such as CD79, d- ablation of the formation of ectopic GCs by
antibodies against lymphotoxin- receptor (LTR) [64-69]. In the territory of autoimmune diseases,
neutralization of survival factors BAFF /APRIL or B cell depletion using monoclonal antibodies
directed to CD19, CD20, and CD22 are the most commonly evaluated in majority of researches
and trials.

B lymphocyte survival factor

BAFF (B lymphocyte survival Factor, BLyS) is a member of the tumor necrosis factor (TNF)
family and an essential component of the innate immune response. BAFF is induced in myeloid
DC by type I interferons (IFNs), it is expressed on the surface of monocytes, dendritic cells (DC),
neutrophils, stromal cells, activated T cells, malignant B cells and epithelial cells.

BAFF binds to three different B cell surface and transmembrane receptors, BAFF-R, TACI
(transmembrane activator and calcium modulator and cyclophilin ligand interactor) and BCMA
(B cell maturation protein). These receptors are expressed differentially during the various stages

of B cell development and maturation.
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Role of BAFF in humoral and cell mediated immune responses

° BAFF enhances long-term B cell survival primarily by up-regulating anti-apoptotic

proteins provoking a prompt response of B cells to BCR activation.

° BAFF and its homologue APRIL (A proliferation-inducing ligand) additionally enhance
the survival of plasma cells that express TACI and/or BCMA.

° BAFF up-regulates Toll-like receptor (TLR) expression which promotes B cell survival

and, together with IL-6, promotes Ig class-switching and plasma cell differentiation.

° In the territory of cell mediated immunity, T cell-independent type II responses require
the interaction of BAFF 60-mer or membrane BAFF with TAC. This interaction is vital for T cell-

dependent immunoglobulin (Ig) M responses.

In contrast, survival and reactivation of the antibody producing memory B cells are BAFF-

independent.

Soluble BAFF and APRIL are expressed at high levels in the sera and the target organs of
patients with antibody dependent autoimmune diseases [69-73].

Ag/'BAFF Ag/ BAFF/ APRIL
Independent Dependent
e cD-20 B2 stage nt"-,bz
—0O0—e— 9@
Pro-B cells p Pre-B cells B Cells /-413!1"2 B cells Memory cells

iL-1, CD-23

\—»I Antibody Production

Figure 2: BAFF and the development of B lymphocytes [73].
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Figure 3: The different developmental stages of B lymphocytes with potential cell surface target

molecules [73].
B cell surface molecules
CD-20 cell surface molecule

A 297-amino acid activated glycosylated trans-membrane phosphoprotein specifically
expressed on the surface of B cells, starting at the early pre-B cell stage and persists until the
differentiation of B cells into plasma cells. CD-20 is not expressed on hematopoietic stem cells,
pro-B cells, or normal plasma cells. Plasma-blasts and stimulated plasma cells may express
CD20. CD20 is co-expressed on B cells with CD19, another B cell differentiation marker. CD20
appears to play a crucial role in B cell development, differentiation, proliferation and cell-cycle
regulation events. The CD-20 density on B cells appears to be important and highly correlates
with complement dependent cytotoxicity (CDC). CD20 may act as a signaling molecule to trigger
apoptosis and complement fixation when engaged with CD20 mAb. Overexpression of the CD-20
antigen has been illustrated in B cell mediated disorders with clonal B cell expansion including
lymphomas, leukemias and ARDs in variable densities [73-77].

CD-22 cell surface molecule

CD22 is a 135-kDa trans-membrane sialoglycoprotein, a member of the immunoglobulin
superfamily. Its expression is restricted to lymphocytes of the B cell lineage. CD22 is present in
the cytoplasm of pro- and pre-B cells and becomes detectable on the cell surface only at mature
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stages of B cell differentiation and is lost during terminal differentiation into plasma cell and after
B cell activation.

The CD22 molecule has multiple ligands because it binds to a2-6-linked sialic acid residues
present on glycoproteins expressed by activated T and B cells, monocytes, neutrophils,
erythrocytes, and activated endothelial cells.

The exact role of this surface molecule remains unrevealed. In vitro studies demonstrated
some positive and negative roles for CD-22 in the regulation of B cell activation through BCR
signaling and cell adhesion. In vivo experimental studies on genetic disruption of CD22 revealed
some important biological functions suggesting a key role for CD22 in B cell development, survival,
and function. CD22-deficieny was associated with a shorter life span, a reduced number of mature
B cells in the bone marrow and in the circulation, and a chronic exaggerated antibody response to
various auto-antigens [78-80].

CD-19 cell surface molecule

CD19isaB-cell specificmembrane protein thatis broadly expressed during B-cell development,
from the pro-B cell to the early plasma cell stage. Although CD19 and CD20 mAb share common
effector mechanisms, therapies targeting CD19 might offer several unique advantages for the
treatment of RA compared with currently available CD20-directed immunotherapies [44].

REGULATORY FUNCTION OF B LYMPHOCYTES

B lymphocytes might additionally exhibit the potential of suppressing immune stimulation
with inflammation. They are capable of down regulating the immune response via the release
of regulatory/ anti-inflammatory cytokines. Experimental studies on arthritis models have
illustrated that certain B cell subsets particularly the ones derived from the gut lymphoid tissue
have the potential to secrete the IL-10 and up-regulate the expression of CD1d with down-
regulation of IL-1 associated inflammatory cascades and signal transducer and activator of

transcription 3 (STAT3) activation.

The B lymphocytes can induce the differentiation of tolerogenic CD41 T cells via antigen
presentation. They also mimic their sister T cells in their patterns of effector immune function. By
revealing theirimmune regulatory potential the B cells can be defined as B effector 1 and 2 cells: the
B effector 1 cells produce Th1-associated pro-inflammatory cytokines, including tumor-necrosis
factor (TNF)-a, IFN-c and IL-12, whereas B effector 2 cells produce Th2-associated cytokines,
including IL-4, IL-13, IL-10 or TGF-b that possess inhibitory functions in autoimmune diseases.
Another possible hypothesis suggests that the removal of apoptotic tissues and circulating self-
antigens by the B cell derived autoantibodies facilitates the rapid clearance of such autoantigens

which may reduce the risk of autoimmune diseases in some situations [81].
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B CELL DEPLETION BIOLOGIC STRATEGIES

B cell depletion strategies are currently achieved either via antibodies targeting the surface
molecule CD20 (e.g., Rituximab and Ofatumumab) or antibodies targeting the B cell survival
factors. Treatment with these antibodies depletes B cells by a combination of antibody-mediated
cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and antibody-triggered

apoptosis.
Anti-CD-20 Biologic Drugs
Rituximab

Rituximab, a chimeric human/mouse IgG1 antibody directed at human CD20, which is found
on only pre-B and mature B cells. The principal B-cell-depleting activity involves antibody-
dependent cellular cytotoxicity and, to a lesser extent, complement-dependent cytotoxicity. The
drug is specifically directed to CD-20 surface molecule. It effectively and completely depletes B
lymphocytes, yet this effect is transient. B cell depletion can be observed as early as 6-12 weeks
after initiation of therapy with complete depletion by 6 months. B cell repopulation recovery
time is variable and full recovery of the B cells might get delayed up to two years from initiation

of therapy.

The drug has been approved by the food and drug administration in the USA and by the
Committee for Medicinal Products for Human Use of the European Agency for the Evaluation
of Medicinal Products in Europe, in 2006, for the treatment of refractory rheumatoid arthritis
(particularly seropositive disease). Anumber of trials demonstrating potential success of different
strategies of rituximab in RA have been published. RTX has shown efficacy in the treatment of
biologic naive patients with RA who failed to respond to conventional DMARDs therapy, in RA
patients who were previously exposed to anti-TNF- therapy, and more recently in methotrexate
and biologic naive early RA (the drug is given as intravenous infusion of 375mg/m? x 2 over 2
weeks to be repeated every 6- 9 months). Follow up of B cell repopulation along the course of
treatment provides an important investigational step prior to repetition of rituximab therapy
[82-89].
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Table 2: Randomized clinical trials with rituximab in patients with rheumatoid arthritis [82-89].

No.

Primary Endpoint/

Author ) Arms RA Clinical Outcomes Remarks
Patients Follow-up
ll\?/l'-l'r;(( ((: : :8)) grr Only RF patients
Edwards et al., Anti-TNFa | ACR50 response/24 ACR50: 13 vs. 33 were included. MTX
161 RTX + MTX (n )
2004 _ naive weeks vs. 43 vs. 41 arm used very low
= 40), or RTX + doses (10 mg/week)
CYC (n=41) 9
Most patients
positive for RF
At week 24: (79%); non-
_ ACR20: 18 vs. 51 significant
Cohen etal., 520 2"02)( JSPE%((Z " Anti-TNFa @g;ioar:jp%ﬁf/ % ACR50:5vs.27 differences at
2006REFLEX trial MTX (n.= 308) failure treatment 2p cars ACR70: 1vs. 12 |6 months in
Y EULAR moderate radiographic
or good: 22 vs. 65 | progression.
Significant reduction
at 1 year
PBO + MTX (n = ‘ ACR20: 28, 55 and No radiological
149) or RTX 2x Proportion of RF- . outcomes measured.
DMARD or " . 55, respectively.
Emery et al., 2006 465 500 mg + MTX (n anti-TNFa positive patients who ACR70: 5.13 Better responses
DANCER trial = 124) or RTX 2x . met the ACR 20%/24 N in patients not
failure 20 EULAR good )
1000 mg + MTX (n weeks response: 4. 14. 28 previously exposed
=192) ponse: 4, 1%, 29 {5 anti-TNFa
RTX (n = 50) vs. . Change from baseline Mean decrease.ln Treatment with RTX
) . ) Anti-TNFa DAS-28: -1.61in |was more effective
Finckh et al., 2007 116 alternative anti- ) of DAS-28 score/at .
TNFa (n = 66) failure least 6 months RTX vs. -0.98in  than a 2nd or 3rd
- anti-TNFa anti-TNFa
RTX (2x 1000 mg)
PBO + MTX (n = . + MTX S|gn!f|§antly
Mean change in improved clinical
232), RTX + MTX .
Change from screening mTSS at 52 weeks |outcomes and
Tak et al., 2009 (2x 500 mg) (n Early RA ) S
715 > . inthe mTSS at week | 1.08 vs. 0.65 vs.  |inhibited joint
IMAGE study =239)or RTX+  MTX naive }
52/52 weeks 0.36 ACR50: 41 damage compared
MTX (2x 1000 mg) .
(n = 244) vs. 59 vs. 64 with MTX alone.
h Published only in
abstract form
Patients with very
One open-label ACR20: RTX vs. Z'tgg‘a‘:::lﬁf:?n?:;';"ty
0,
Mease et al., 2010 course Of RTX. 1 i INFa  ACR20 response at48 |00 24 VS 45%,  haq o8 7).
. 475 From week 24 ) mean change in . ’
SUNRISE trial failure weeks/48 weeks . No differences in
RTX (retreatment DAS 28: -1.9 vs.
ACRS50, ACR70, and
group) vs. PBO -1.5

EULAR responses in
both groups

In Systemic Lupus Erythematosus (SLE)

In ARDs like SLE where the B lymphocytes master the scenarios of immune events, the concept

to ameliorate the autoimmune phenomena by suppression of autoantibody production and

thereby nullifying autoantibody-dependent effector mechanisms has served as the main rationale

for the off label use of B-cell-directed therapies. The use of such therapy additionally supported

the inhibition of B-cell-mediated processes such as antigen presentation, cytokine production and

reciprocal activation of T cells.

Rituximab is an off-label biologic that can be used in patients with refractory SLE. The off-label

use was first reported in 2002, after which the drug has been progressively used in SLE [89].

Multiple evidences from human and experimental researches have indicated that Blymphocytes
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play a central role in the pathogenesis of SLE. Moreover, the efficacy of B-cell depletion usinganti-
CD20 monoclonal antibodies in murine models of SLE has been demonstrated. In human studies,
RTX successfully loweredCD20 B-cell levels in peripheral blood within days to weeks (an effect
sustained for up to 6 months), reduced anti-dsDNA and anti-nucleosome antibodies, and reversed
B-cell homeostasis abnormalities. Although RTX should not be used as first-line treatment
in SLE or in patients with a predominantly mild form of the disease, the results of its off-label
use in patients with severe, refractory SLE seems to be sufficiently positive to warrant its use
in this subgroup of patients. Uncontrolled trials and case studies illustrated encouraging results
except for two recent trials the EXPLORER and the LUNAR studies. The two RCTs addressed the
hypothesis that the addition of rituximab to the standard of care, corticosteroids and immune-
suppressants was superior to addition of placebo for the control of SLE activity, with insignificant
differences [90-110].

Table 3: Reported efficacy of rituximab in some of the Non-randomised trials of systemic lupus

erythematosus.
L. . Organ-specific Number of patients/follow- Method of a.s.sessment (mean
Study Rituximab regimen | disease activity score before/after
disease up (months) .
B-cell depletion)
Anolik and . SLAM improved in patients achieving
colleagues Variable No (7LN) 172 effective B-cell depletion (6.8/5.2)
Cambridge and 2-dose No (12/15LN)  15/6 BILAG
colleagues
Tokunaga and Variable Yes, NPSLE  10/7 to 45 Neurological parameters (GCS)
colleagues
Reynolds and Variable No 11/10 BILAG (median reduction of 7.5)
colleagues
Li and colleagues 2-dose Yes, LN 19/12 SLEDAI (9.2/2.5)
Pepper and 2—dpse + MMF Yes, LN 20/12 Renal parameters improved in 14/18
colleagues maintenance at 12 months
Catapano and 4-dose (15) or2-dose +
colleagues CYC (16) No (11 LN) 31/30 BILAG (14.5/3.5 at 24 months)
Smith and 4-dose, retreated with No 11/24 BILAG (14/2)
colleagues 2-dose
Gunnarssonand 1 4,0 Yes, LN 716 SLEDAI (15/3)
colleagues
Galarza and 4-dose No 43/12 SLEDAI (12.5/4.5)
colleagues
Boletis and 4-dose Yes, LN 10/38 Renal parameters
colleagues
Melander and 4-dose regimen (10 Yes, LN 20/22 12/20 improved
colleagues retreated)
BILAG, British Isles Lupus Assessment Group; CYC, cyclophosphamide; GCS, Glasgow Coma Scale; MMF, mycophenolatemofetil;
SLAM, systemic lupus activity measure; LN, lupus nephritis; NPSLE, neuropsychiatric systemic lupus erythematosus; SLEDAI,
Systemic Lupus Erythematosus Di Activity Index. 2Randomised controlled trial. "Same cohort in these studies.
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Table 4: Comparing Randomized Controlled Trials [94,96,100].

Study Rituximab regimen Concomitant therapy Endpoints Results
: o :
\?vir;hmigyn.'n(ll)et/; ;;?near:; | () and (ii) no significant
renal responses ;t difference; (iii) placebo (50%)
week 52 pSeconda . |and rituximab (69%) (P <0.01);
Randomised 1:1 to receive (il atier.1ts with BLI'y- and (iv) placebo (25.9%) and
LUNAR either rituximab or placebo on MMF and corticosteroids P rituximab (37.5%) (P <0.03).
UPCR >3 to UPCR <1; |, ) ..
days 1, 15, 168, and 182 % patients requiring a new
(iiiy % change from BL immunosuppressive agent
in anti-dsDNA: and (iv) bpre gen
placebo (11.1%) and rituximab
mean change from BL (1.4%)
in C3 (mg/dl) e
Usual dose prednisolone and | Primary: effect of Primary EP: major clinical
either azathioprine 100 to 250 placebo or rituximab response 15.9% vs. 12.4%
Randomised 1:2 to receive mg/day, MMF 1 to 4 g/day or |in achieving and and PCR 12.5% vs. 17.2%
placebo or rituximab, MTX 7.5 to 27.5 mg/week, maintaining a major,  for placebo and rituximab,
EXPLORER methyl prednisolone 100 and additional prednisolone |partial or no response | respectively. In the African
mg and acetaminophen and |(0.5 mg/kg, 0.75 mg/kg, or 1.0 at week 52 in each of | American/Hispanic group:
diphenhydramine or placebo ' mg/kg), tapered beginning on |the eight BILAG index 'major clinical response 9.4%
ondays 1, 15, 168, and 182 day 16 to a dosage of 10 mg/ |organ system scores. |vs. 13.8% and PCR 6.3%
day over 10 weeks and 5 mg/ | Secondary: described |vs. 20.0% for placebo and
day by week 52 earlier rituximab, respectively
Primary EP: no significant
difference between the two
groups. Overall, at week 48,
21% had a complete response,
58% achieved partial response,
11% remained the same and
11% worsened. Secondary
Randomised to receive Primary: in each of the EP: 42% patients achieved
either rituximab or a groups, % patients with |a complete response; 95%
combination of rituximab o complete response at | achieved effective depletion;
. Other medications were . L ) )
and cyclophosphamide 750 week 48. Secondary:  no significant difference in the
stopped except for . . - - Lo
mg on day 1 and day 15, . % patients with proportion of patients achieving
. ) hydroxychloroquine, oral . . .
Liand followed by intravenous rednisolone and statins partial response; and |a complete depletion at weeks
colleagues |methylprednisolone 250 mg p ) duration of complete 4, 8, 24 and 48 between the

and oral prednisolone 30 mg
from day 2 to day 5, then 0.5
mg/kg for 4 weeks and then
reducing the dose by 5 mg
every 2 weeks to 5 mg/day

All patients also received
angiotensin-converting
enzymes inhibitors

CD19*B-lymphocyte
depletion, histological
assessment, adverse
effects or death at
week 48

two groups except at week 2;
a significant improvement in
mean serum albumin levels
(28.1 to 39.4), changes in

the concentration of serum
C3 (0.55 to 0.85), dsDNA
antibody (693 to 8) and
immunoglobulins. At week 48,
the urinary protein excretion
improved and there was an
improvement in the ESR (62.1
to 30) and SLEDAI (9.2 to 2.5)

BL, baseline; EP, endpoint; ESR, erythrocyte sedimentation rate; MMF, mycophenolatemofetil; MTX, methotrexate; PCR, partial

clinical response; SLEDAI, Systemic Lupus Erythematosus Di

Activity Index; UPCR, urine protein creatinine ratio.
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Table 5: Possible Explanations for the apparent discrepancy between Real life-case studies
DBRCTs [94].

Clinical experience Randomised controlled trials

Rituximab was used as an add-on therapy to

Disease activity Refractory to conventional immunosuppressants background immunosuppressants

Favourable response reported in life-threatening
cases, often including a range of organ-system
involvement such as CNS manifestations,
cytopenias and others

No defined pretreat t, theref let d ) . .
p:rtiael ined pretreatment, therefore compiete an Predefined endpoints were stringent, perhaps

Clinical response driven by the impressive responses seen in clinical
experience in an uncontrolled setting

Life-threatening cases and those with CNS
manifestations were not evaluated in controlled
trials. This setting warrants a dedicated study

responders might not be clearly distinguished

Predefined and usually stringent. For example,
Improvement in one system alone might qualify for |despite clinical response and steroid-sparing effect,
response, regardless of a flare or lack of response |a reduction in proteinuria that does not meet the

in another organ system predefined threshold would not qualify as complete/
partial response

Flexibility in changes to background

Background . ) ) Changes to or deviation with predefined
immunosuppressants immunosuppressants including the dose of background therapy would qualify as nonresponder
corticosteroids
Concomitant use of large dose of corticosteroids
Concomitant use of large dose of steroids is might have limited any beneficial effects of
uncommon rituximab, the extent of which may be more
restricted in such a setting than previously assumed
Rituximab dosing-regimen Variable between reports Predefined dosing regimen
. ) Stelr0|d—spar|ng effect is not a requirement to Steroid dosing effect was included in the definition
Steroid tapering define response and therefore favourable response

might be overestimated of clinical response

No standardised reporting of adverse events.
Therefore, the true incidence of serious adverse
Adverse events events in clinical practice is not comparable with
that reported in other uncontrolled studies or
controlled clinical trials

Rituximab therapy appears to be safe as no there
were no significant differences in serious adverse
events when compared with standard-of-care
treatment

Predefined, therefore, unless long-term studies
are undertaken, it would be difficult to detect the
importance of effects seen at relatively short-term
follow-up

Not defined, therefore it is not known how many
Follow-up period responders had sustained response in the long
term

CNS, central nervous system.

In vasculitis

Rituximab (anti-CD-20 therapy) showed considerable efficacy in different subtypes of
vasculitis especially cryoglobulinemic vasculitis, ANCA associated vasculitis and cutaneous
vasculitis with connective tissue diseases including rheumatoid arthritis, systemic lupus
erythematosus and Sjogren’s syndrome. Rituximab can be considered as an effective alternative
line of therapy in newly diagnosed as well as refractory ANCA-associated vasculitis. Wegener’s
Granulomatosis (granulomatosis with polyangiitis) patients with retro-orbital granulomas tend
to be less responsive to rituximab therapy. A number of case reports and studies reported success
of off label use of Rituximab in refractory ANCA associated vasculitis. The two major trials of
rituximab in ANCA associated vasculitis the RAVE and RITUXVAS concluded that rituximab was
non-inferior to other conventional immunosuppressive regimens in refractory as well as newly

diagnosed cases.
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The great limitation of rituximab use in some cases with GPA or microscopic polyangiitis
might be the need for retreatment in the absence of well-defined consensus on the off label use of

the drug in such cases to be retreated following initial treatment [111-118].

Rituximab showed efficacy in cases with HCV-mixed cryoglobulinemia. The rationale behind
anti-B-cell therapy in mixed cryoglobulinemic vasculitis relies on the concept that the chronic
stimulation by hepatitis C virus as a lymphotropic virus induces polyclonal B cell proliferation
with the subsequent production of mixed cryoglobulinsby the infected B cells with subsequent
formation of immune complex deposits. Rituximab was successfully used in combination with
antiviral agents as well as mono-therapy in HCV cryoglobulinemic vasculitis. Rituximab combined
with Peg-IFN-a/ribavirin delete both virus-dependent and -independent B-cell clones. Antiviral
therapy alone decreased the memory B cells, whereas in association with rituximab, naive B cells
are the main depleted population [111,119,120].

In sjogren syndrome

The use of B cell targeted therapy in Sjogren syndrome is restricted to a number of case studies
and case reports with the drug used as an off label alternative to conventional therapy showing
promising results. Several uncontrolled studies have reported successful off-label use of RTX in
small series of patients (20 patients) with primary SS. The first open-label study was reported in
2005 and included 15 patients (including 7 patients with B-cell lymphoma) who received four
weekly infusions of 375 mg/m? of RTX with a significant improvement in subjectivesymptoms
and increased salivary gland function in patients with residual glandular function [120]. Another
study by Devauchelle-Pensec and colleagues studied 15 patients with primary SS who received
two weekly doses of RTX (375 mg/m?). Depletion of peripheral B cells was complete in all patients
after 12 weeks from the infusion therapy, without significant changes in the levels of natural
killer, T helper, and cytotoxic T cells [121]. In a retrospective study of 16 patients with primary
SS and systemic features, treatment with RTX was associated with decreased serum levels of RF,
globulins, and 2-microglobulin [122]. B-cell depletion showed an inverse relationship with serum
BLyS levels that was sustained up to 18 months in 3 out of 15 patients with primary SS treated
with rituximab in the BIOGEAS register (multicenter Spanish register) [123]. Rituximab was
found to improve sicca features, salivary flow, ocular tests, fatigue and quality of life in another
two recent RCTs [125-126].

In inflammatory myopathies

Various small open-label studies have used RTX to treat severe, refractory inflammatory
myopathies. RTX induced partial remission of muscular involvement in some cases. RTX stabilized
and/orimproved pulmonaryinvolvementin 7 of 11 (64%) patients with anti-synthetase syndrome
(presenting severe, progressive interstitial lung disease refractory to immunosuppressive agents)
6 months after treatment. The BIOGEAS Multicenter Study Group has included the largest series of
patients so far including, 20 patients with inflammatory myopathies (11 with dermatomyositis, 4
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with polymyositis, and 5 with antisynthetase syndrome), of whom 11 (55%) achieved a complete
response, 6 (30%) achieved a partial response, and 3 (15%) were classified as non-responders.
The therapeutic response was excellent for muscular (94%), cutaneous (80%), and pulmonary
involvement (75%) with 40% relapsing after a mean follow-up of 19 months. RTX increased risk
of serious infections in some of the studied patients with one death in the BIOGEAS from serious
infection [90,124,127].

In systemic sclerosis

Rituximab had been evaluated in systemic sclerosis in three open label in addition to standard
treatment. Rituximab administration in these trials showed improvements in Rodnan score,
histological analysis of skin biopsies revealed a significant reduction in the myofibroblast score
with elimination of B cells skin infiltrates with stabilization of pulmonary function tests after
treatment. The potential efficacy of RTX in SSc associated pulmonary arterial hypertension has
not yet been evaluated [128-130].

Ocrelizumab

Ocrelizumab is a humanized anti-CD20 mAb. The drug has been tried in patients with
rheumatoid arthritis RA in combination with methotrexate (two regimens used: 200 mg and
500 mg x2 every 6 months) and was effective in reducing signs and symptoms of uncontrolled
inflammation and joint damage. The use of Ocrelizumab was associated by a significant increase
in serious infections in four double blind randomized controlled trials DBRCTSs raising concerns

regarding safety versus efficacy in RA.

Ocrelizumab was investigated in two trials: the BEGIN study for non-renal SLE (cancelled early)
and the BELONG study for proliferative lupus nephritis. The drug was administered using different
regimen from those in RA at either 400 or 1,000 mg intravenously x2 at trial entry with repeat,
single dosing every 4 months. In the BELONG study greater treatment effects of ocrelizumab were
observed when combined with the EUROLUPUS cyclophosphamideregime (renal response of
65.7% for ocrelizumab vs.42.9% for EUROLUPUS alone) than with mycophenolatemofetil (renal
response of 67.9% for ocrelizumab vs. 61.7% for mycophenolate alone) with results showing

adverse events when ocrelizumab was given with mycophenolate combination [94,131,132].
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Table 6: Safety and efficacy of ocrelizumab in lupus nephritis: design and results of the BELONG
study [94].

Patients and methods

Concomitant therapy

Endpoints

Results

A total of 381 patients

with class Il or class IV
(80%) LN were randomised
equally to receive either:
placebo, OCR 400 mg or
OCR 1,000 mg on days

1, 15 and every 16 weeks
thereafter, >74% received
three infusions and >50%
received four infusions

In addition, either: MMF up to 3 g/day
(63%); or EL (cyclophosphamide 500

mg x6/2 weeks) followed by azathioprine
2 mg/kg up to 200 mg/day; and a steroid

taper regimen - intravenous steroids:
allowed up to 3 g by day 15, given in

divided pulses), oral steroids: 0.5 to 0.75

mg/kg (£60 mg/day) with taper to <10
mg over 10 weeks

Complete renal response:
normal serum creatinine and
<25% higher than baseline;
urinary protein to creatinine
ratio <0.5; inactive urinary
sediment

In all modified intention-to-
treat populations, there was a
treatment difference of 12.2%
with 54.7% vs. 66.9% for
placebo (n =75) and OCR (n =
148) groups, respectively

Partial renal response:
serum creatinine <25%
above baseline value; and
50% improvement in the
urine protein to creatinine
ratio, and if baseline ratio
>3.0 then a urine protein to
creatinine ratio <3.0

ORR higher in OCR (400 mg)
+ EL (65.6%) and OCR (1,000
mg) + EL (74.2%) groups vs.
placebo + EL (42.9%), ORR
was similar in OCR+ MMF
(67.9%) vs. placebo + MMF
(61.7%)

Nonresponse: not achieving
either a complete or partial
renal response. Patients
who died or discontinued

the study prior to week 48
(and had no renal data within
12 weeks of week 48) were
considered nonresponders

250% reduction in urine
protein-to-creatinine ratio
occurred in 69.6% vs. 58.7 %
for OCR and placebo groups,
respectively

Urine protein-to-creatinine ratio
<0.5 was achieved in 39.9%
vs. 37.3% for

OCR and placebo, respectively

Serious adverse effects
imbalance

appeared to be driven by the
combination with MMF: OCR
400 mg (41.8%) compared with
1,000 mg OCR + MMF (24.1%)
and placebo + MMF (21.3%).
Serious adverse event rates in
EL groups were not reported
as higher in the OCR arms

Serious infection imbalance
appeared to be driven by

the OCR combination with
MMF. MMF groups: OCR 400
mg (32.9%) compared with
1,000 mg OCR (19%) and
placebo + MMF (16.3%). EL
groups: OCR 400 mg (12.8%)
compared with 1,000 mg OCR
(10.4%) and placebo + MMF
(11.1%)

EL, EUROLUPUS regimen (cyclophosphamide followed by azathioprine); LN, lupus nephritis; MMF, mycophenolatemofetil; OCR,

ocrelizumab; ORR, overall renal response
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Ofatumumab

Ofatumumab is a human immunoglobulin (Ig) G1k monoclonal antibody (mAb) that specifically
binds to the human CD20 antigen inducing potent B cell lysis. Ofatumumab recognizes amembrane-
proximal epitope on the human CD20 molecule, distinct from the epitope recognized by rituximab
and other anti-CD20 mAb. In addition, Ofatumumab has a slower rate of dissociation from its’
CD20 target epitope than RTX, which results in greater complement-dependent cytotoxicity with
efficient lysis of RTX refractory B-cell lines. The drug is approved for the treatment of chronic
lymphocytic leukemi is fractory to fludarabine and alemtuzumab. Clinical trials (phase/II)
revealed that ofatumumab doses of 300 mg, 700 mg, and 1000mgadministered intravenously
as 2 infusions 2 weeks apart demonstrated significant clinical benefit compared with placebo
in patients with active rheumatoid arthritis (RA) who had an inadequate response to disease-
modifying anti-rheumatic drugs (DMARD) [133].

In another single-blind, phase I/II study that aimed to investigate the safety and tolerability
of a single subcutaneous (SC) dose of ofatumumab,35 patients with RA were randomized in 5
cohorts to receive a single subcutaneous (SC) ofatumumab dose ranging from 0.3 to 100 mg, or
placebo, following premedication with oral acetaminophen and antihistamine. Patients were
followed for 24weeks with extended follow up to monitor B cell and immunoglobulin recovery
for up to 2 years if required. Treatment of RA patients with SC ofatumumab doses of 30 mg or
higher resulted in profound and prolonged B cell depletion in blood. Single doses up to 60 mg
were tolerated without glucocorticoid premedication. Infusion reactions resulting from rapid B
cell depletion and cytokine release are commonly observed with [V administration of anti-CD-20
biologic drugs and may be severe. Approaches including increased volume of infusion, increased
infusion time, and use of IV glucocorticoid premedication successfully reduced the incidence and
severity of infusion reactions [134].

Anti-CD-22 Epratuzumab

Epratuzumab is a humanized monoclonal antibody targeting the CD22 receptors on the
B lymphocytes. Two multicenter, placebo-controlled, randomized, double-blind studies are
available (EMBODY™ 1 and EMBODY™ 2), designed to evaluate the efficacy, safety, tolerability,
and immunogenicity of Epratuzumab in patients with moderate to severe SLE, each including 780
subjects over 54 weeks. Ongoing experimental studies addressing the role of anti-CD22 in ANCA
vasculitis are being run. The two EMBODY™ Phase 3 clinical studies for epratuzumab in Systemic
Lupus Erythematosus (SLE) did not meet their primary clinical efficacy endpoints in either dose in
both studies. Treatment response in patients who received epratuzumab in addition to standard
therapy was not statistically significantly higher than those who received placebo in addition to
standard therapy [135-139].
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Anti-CD19-Directed Therapies

The MDX-1342 (Medarex, Princeton, NJ) is a fully humanized antibody that selectively to CD19
and induces the depletion and elimination of B cells expressing CD-19 (other than stem cells or
fully differentiated plasma cells, which lack CD19 expression).

Preliminary data available from an ongoing phase I study of MDX-1342 in subjects with active
RA (despite treatment with MTX)has demonstrated potent B-cell depletion effects with a single-
dose (10 or 30 mg) administration of MDX-1342 [44,78].

Targeting B cell Survival Factors

Therapeutic antagonism of BAFF and its homologue APRIL (a proliferation-inducing ligand)
targets an important homeostatic signal for B cell survival and selection.

Belimumab

B-lymphocyte stimulator (BLyS), also called B-cell activating factor (BAFF) is a growth
factor required for B-cell survival, maturation, and activation, germinal-center formation, the
development of B cells into plasma cells and immunoglobulin production. Many of the subsets of
maturing B cells are completely dependent on the binding of BAFF receptors by BLyS to survive
and mature. Mature, activated B cells differentiate into plasmablasts or memory B cells, memory
cells lack BAFF receptors.

Belimumab is a fully humanized IgG1l-Amonoclonal antibody that binds to soluble BLyS
abrogating its binding to its receptors and thus suppressing its activity. Belimumab depletes
activated and naive B cells as well as plasma cells but not memory B cells. Belimumab is an
anti-BLyS monoclonal antibody (LymphoStat-B) that binds specifically and with high affinity to
soluble BLyS and inhibits its binding to TACI, BCMA, and BR3. The persistence of memory B cells
in patients with SLE could be a limitation of belimumab therapy, because these cells can give rise
to progeny that can secrete the entire undesirable autoantibody repertoire, it is also an advantage,
because protective antibodies against influenza, pneumococcus, and tetanus are maintained and

can be successfully induced with revaccination [71,140-142].
In rheumatoid arthritis

Belimumab is not an approved therapy in RA it has been investigated in RA and results were
rather modest. In one randomized, double blind, multicenter placebo-controlled phase II clinical
trial (DB-PCT) by McKay and colleagues in 2005, belimumab was investigated in a total of 283 RA
patients with moderate-to-severe disease activity. Belimumab at doses of 1mg/kg, 4mg/kg, 10
mg/kg intravenously administered on days 0, 14, and 28, and then every 4 weeks through week
24, in addition to standard-of-care therapy (concurrent DMARD) showed modest improvement in

ACR 20 response criteria with significantly higher gains compared to placebo. In another phase 11
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clinical DB-PCT, belimumab therapy wasn’t associated by significant increase in the incidence of
adverse or serious adverse events. The most frequent adverse events observed were arthralgia,
upper respiratory tract infections, urinary tract infections, diarrhea, joint swelling, headache,

fatigue, peripheral edema, pain in extremities, cough, pruritus, and sinusitis [144,145].
In systemic lupus erythematosus

Elevated plasma levels of soluble BLyS has been found in 50% of patients with active SLE

suggesting a key role for this molecule in the pathogenesis of the disease.

The safety and efficacy of belimumab in SLE has been evaluated in several RCTs. Two large,
phase 3, multicenter, prospective, randomized, controlled trials have compared belimumab with
placebo in patients with SLE who were receiving standard therapies. The trials were designated
according to their duration in weeks as BLISS-52 (865 patients from Latin American, Asian-
Pacific and Eastern Europe) and BLISS-76 (819 patients from North America, Central America,
and Europe). The trials included patients with active disease, who were seropositive to ANA titer
21:80 or anti-dsDNA antibody titer 230 [U per milliliter at entry. In both trials patients were
randomly assigned to belimumab at a dose of 1 mg per kilogram of bodyweight, belimumab at
a dose of 10 mg per kilogram, or placebo. The study drugs were administered by intravenous
infusion on days 0, 14, and 28 then every 28 days. The primary outcome measure in both studies
was the Systemic Lupus Erythematosus Responder Index (SRI) at week 52. Both studies showed
significant improvement in the SRI with 10 mg of belimumab per kilogram as compared with
Placebo.

Belimumab was approved by the FDA in 2011 for use in patients with active SLE. The FDA
approval specifies that this agent is indicated for patients with active uncontrolled autoantibody-
positive SLE who are receiving standard therapy, including glucocorticoids, antimalarial agents,
immunosuppressive agents, and nonsteroidal antiinflammatory drugs. Belimumab is given
intravenously at a dose 0f10 mg per kilogram on days 0, 14, and 28 and then every 28 days. The
infusions, especially the first two infusions, should be administered at an infusion center, because
reactions to the first two infusions are not unusual. Preinfusion treatment with acetaminophen,
diphenhydramine, intravenous glucocorticoids, or a combination of these agents can be used to
mitigate such reactions. Belimumab has no known drug interactions, and no dose adjustments are
required for renal or hepatic dysfunction [140,146].

Atacicept

Atacicept is a human recombinant fusion protein that comprises the binding portion of
a receptor for both BLyS (B-Lymphocyte Stimulator) and APRIL (A PRoliferation-Inducing
Ligand), Atacicept has shown selective depletion of the mature B cells and the late stages of B cell
development with blocking of plasma cells, while sparing B-cell progenitors and memory cells.
Experimental studies demonstrated the efficacy of atacicept in animal models of autoimmune

disease and the biological activity of atacicept in patients with systemic lupus erythematosus
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(SLE) and rheumatoid arthritis (RA) has been demonstrated with reduction of the Ig M and Ig
G levels. The use of atacicept as an alternative B cells targeted therapy in refractory vasculitis

remains to be investigated [147-149].
Other anti BLyS strategies

Blisimod (A623) soluble and membrane bound BLyS and Tabalumab (LY2127399) soluble
and membrane BLyS that are currently being investigated [150].

B-lymphocyte tolerogens

Abetimus (LJP-394) is a B-cell tolerogen. It consists of four double-stranded DNA (dsDNA)
epitopes on a polyethylene glycol platform. It cross-links anti-dsDNA surface immunoglobulin
receptors on B-cells, leading to anergy or apoptosis. It also reduces titers of anti-dsDNA antibodies.
Abetimus was the first B-cell tolerogen developed for SLE and was studied in human trials for the
treatment of nonrenal lupus and lupus nephritis. Initial trials suggested a reduction in renal flares
in patients who have high-affinity antibodies to the DNA epitope contained within the abetimus
molecule. After an analysis of a phase Il Abetimus Sodium in patients with a history of lupus
nephritis (ASPEN) trial, the trial was terminated when interim efficacy analysis indicated no
benefit to continue. TV-4710 (Edratide) another tolargen peptide composed of 19 amino acids
based on the complementarily determining regions (CDR1) of a human anti-dsDNA antibody, was
tested in a phase II trial. This study has been concluded but there are yet no results released [151-
153].

The novel strategy of the B-cell-targeted biologic therapy is an encouraging field for research.
The proven effectiveness of this strategy in a variety of ARDs is increasing the demand for more
research. In depth studies to address the potential role of regulatory B cells and the desire of a
novel interventional approach targeting the memory B cell compartment represent unmet needs

that might add to the effectiveness of this strategy.
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