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Abstract

In this paper a methodology is presented that can be used to statistically 
model characteristics of near-surface wind speed in complex terrain at high 
spatial resolution. It was developed based on daily mean wind speed time series 
provided by the German Weather Service for 65 stations located in southwest 
Germany. After comprehensive preparation of the wind speed data that were 
measured in the period 1975 to 2010 including gap filling, homogenization, 
detrending and measurement height correction, 48 continuous distributions 
were fitted to the empirical distributions associated with the wind speed time 
series. The results of the evaluation of the goodness-of-fit demonstrate that the 
five-parameter Wakeby-distribution characterizes the statistical properties of 
measured wind speed better than all other tested distributions. Based on surface 
roughness, terrain-related parameters (curvature, topographic exposure) and 
ERA-Interim reanalysis wind speed data available for the 850 hPa pressure level, 
LSBoost-models were built to estimate station-specific Wakeby-parameters. 
The LSBoost-models were then used to model the Wakeby-parameters on a 50 
m resolution grid in the entire study area as a function of the predictor variables. 
The area-wide availability of the Wakeby-parameters allows producing detailed 
wind speed quantile maps.

Keywords: Wind speed measurement; Ensemble methods; Wakeby-
distribution; Hellmann power law

the basis for the selection of most appropriate sites for wind turbines 
which offer great potential to reduce CO2-emissions [18].

There is ongoing debate whether there is a distribution function 
that describes empirical distributions of wind speed data best [19,20]. 
In many previous studies [1,2,4,6,19-29], the Weibull function was 
used to represent empirical wind speed distributions. However, 
results from other studies [30-33] demonstrate that wind speed 
distributions cannot always adequately be represented by the Weibull 
distribution, especially when wind speed strongly varies with wind 
direction [34].

Since the orography in the southwest of Germany is complex and 
the landscape is compartmentalized, the near-surface wind speed 
characteristics vary on small scales, i.e. from measuring station to 
measuring station. Thus, the goals of this study are (i) to evaluate 
which distribution function is most appropriate for describing the 
statistical properties of wind speed data measured near the ground in 
the southwestern German federal state Baden-Wuerttemberg, (ii) to 
develop a statistical model based on the best-fitting distribution that 
is able to provide reasonable estimates of near-surface wind speed 
quantiles in high spatial resolution (50 m resolution grid) in the study 
area.

Material and Methods
Study area

The study area is the German federal state of Baden-Wuerttemberg 
(southwest Germany). It has a surface area of 35752 km2. Its orography 
is complex and includes the low mountain ranges Black Forest 

Introduction
A measure often used to quantify characteristics of near-surface 

wind fields is the absolute value of the horizontal wind vector 
commonly known as wind speed. While variations of wind speed 
at the earth surface are ubiquitous, there is often limited knowledge 
about the wind speed characteristics at a particular site. An inherent 
characteristic of wind speed is its high spatiotemporal variability [1,2]. 
Especially rough surfaces [3] and complex terrain [4] modify near-
surface wind fields. Unfortunately, there are often too few wind speed 
measuring stations in place although wind speed measurements made 
near the ground are strongly influenced by land cover and terrain at 
and around the measuring sites [5-7]. The lack of near-surface wind 
speed measurements often limits knowledge about statistical wind 
speed properties and thus about the local wind resource.

On the other hand, there is great interest in detailed information 
on the characteristics of the near-surface wind speed field: forest 
administrations seek to locate areas prone to wind damage [8,9], 
insurance companies want to assess wind-induced loss potentials 
[10,11], local authorities work for the improvement of air quality 
by maintaining and/or enhancing natural ventilation in urban areas 
[12,13] and there is great potential to maximize the exploitation of 
wind power by providing detailed information on the local wind 
resource [7,14-16]. It was pointed out by [17] that for an accurate 
assessment of wind characteristics the choice of an appropriate 
statistical distribution function is crucial because the distribution of 
wind speed values determines the performance of wind turbines. An 
accurate assessment of the local wind resource on multi-year scales is 
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(length ~150 km, width ~30-50 km, highest elevations > 1400 m) 
and Swabian Alb (length ~180 km, width ~35 km, highest elevations 
> 1000 m) as well as the broad, flat Rhine Valley, which borders on 
France in the west. The elevation (ϕ) within the study area ranges 
from 85 m above sea level (a.s.l.) in the Rhine Valley to 1493 m a.s.l. 
at the top of the Feldberg, which is the highest mountain in Baden-
Wuerttemberg. The ϕ-values in the study area mainly vary between 
200 m and 800 m a.s.l. (Figure 1a). The land cover types within the 
study area might change on small scales (< 1 km) and often create 
a compartmentalized landscape. The land cover types available from 
the Corine Land Cover (CLC) 2006 dataset for Germany [35] and the 
roughness length (z0) values associated with these land cover types are 
listed in Table 1. Rough surface types like urban areas and forests have 
higher z0-values (1.00 m and 0.80 m) than smoother surface types like 
agricultural areas (0.10 m) or natural grass land (0.03 m). The z0-
values, which were interpolated from the original spatial resolution 
of the CLC-dataset of 100 m to a 50 m resolution grid, correspond to 
standard z0-values found in literature [36-38]. According to the CLC-
data, the study area’s surface is mainly covered by agricultural areas 
(51%), forests (38%) and artificial surfaces like urban areas, airports, 
road networks and rail networks (9%). The corresponding bimodal 
z0-value distribution is displayed in Figure 1b.

The complexity of the terrain in the study area was further 
quantified by a distance limited topographic exposure score (τ) which 
was described by [39,40]. The τ-values were calculated by summing 
the vertical angles to the skyline at 100 m intervals for the eight main 
compass directions up to a distance limited to 1000 m for each grid 
cell. Lower τ-values indicate higher exposition of a site to wind. In 
the study area, close to 60% of all τ-values are in the range 0O to 25O 
(Figure 1c). The τ-values used in this study were provided by the 
Forest Research Institute of Baden-Wuerttemberg.

Wind speed data
Daily mean wind speed values provided by the German Weather 

Service (DWD) for 65 meteorological stations were used in the present 
study. The stations are listed and indexed in Table 2. The indexed 
DWD-stations are distributed in the entire study area as well as in the 
bordering federal states Rhineland-Palatinate, Hesse and Bavaria as 
shown in Figure 2. Although hourly mean wind speed values are also 
available from the DWD, daily mean wind speed values available for 
the period 1975-01-01 to 2010-12-31 were used here (i) to maximize 
the number of stations with multi-year wind speed records and (ii) 
to minimize the effects of terrain-induced wind speed variations on 

Figure 1: Relative frequency histograms illustrating the distributions of (a) 
elevation (ϕ) values, (b) roughness length (z0) values and (c) topographic 
exposure score (τ) values occurring in the study area.

ID Land cover type z0 (m)
1 Urban area 1.000
2 Forested area 0.800
3 Green urban area 0.500
4 Agricultural area 0.100
5 Natural grass land 0.030
6 Airports 0.010
7 Open spaces with little vegetation 0.010
8 Water bodies 0.005

Table 1: Land cover types available from the Corine Land Cover 2006 dataset for 
Germany [35] and corresponding roughness length (z0) values.

ID Station ID Station
1 Albstadt-Onstmettigen 34 Münstertal
2 Bad Herrenalb 35 Öhringen
3 Bad Säckingen 36 Pferdsfeld
4 Bad Wildbad-Sommerberg 37 Schluchsee
5 Baiersbronn-Obertal 38 Schömberg
6 Beerfelden 39 Schwäbisch Gmünd
7 Dobel 40 Stimpfach-Weiptershofen
8 Donaueschingen 41 Stötten
9 Dörrmoschel-Felsberghof 42 Stuttgart Schnarrenberg
10 Enzklösterle 43 Stuttgart-Echterdingen
11 Eschbach 44 Titisee
12 Feldberg 45 Triberg
13 Freiburg 46 Uffenheim
14 Freudenstadt 47 Ulm
15 Friedrichshafen 48 Ulm-Wilhelmsburg
16 Gailingen 49 Waldachtal-Lützenhardt
17 Hinterzarten 50 Walldürn
18 Höchenschwand 51 Würzburg
19 Hornisgrinde 101 Bad Dürrheim
20 Idar-Oberstein 102 Dogern
21 Isny 103 Lindau
22 Kandern-Gupf 104 Müllheim
23 Karlsruhe 105 Neuhausen ob Eck
24 Kempten 106 Pforzheim-Ispringen
25 Klippeneck 107 Sipplingen
26 Königsfeld 108 Söllingen
27 Konstanz 109 Stockach-Espasingen
28 Lahr 110 Stuttgart-Stadt
29 Laupheim 111 Todtmoos
30 Leipheim 112 Waldsee, Bad-Reute
31 Mannheim 113 Weilheim-Bierbronnen
32 Memmingen 114 Weingarten
33 Michelstadt Vielbrunn

Table 2: List of indexed DWD-stations: stations with ID-values 1-51 are included 
in the parameterization data set (DS1); stations with ID-values 101-114 are 
included in the validation data set (DS2).
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sub-daily scales. Wind speed data measured at sub-daily intervals 
might introduce local, diurnal and multi-modal behavior into time 
series [30,41-43] that is often not reflected by neighboring stations, 
especially in complex terrain. The potential to fill data gaps in multi-
modal, but mostly incomplete wind speed time series using wind 
speed data from neighboring DWD-stations is limited. Moreover, it is 
important to note that until 2001-03-31 daily mean wind speed values 
provided by the DWD were calculated from three measurements 
made at the climatological standard times (7 a.m., 2 p.m. and 9 p.m.). 
Afterwards, 24 hourly mean wind speed values were used to calculate 
daily mean values.

Wind direction was not included in model development because 
of (i) the limited number of wind direction measurements in the study 
area and (ii) the complexity of the terrain in the study area which 
induces a spatiotemporal variability in wind direction that cannot be 
reproduced by the available measuring stations.

Out of the 65 wind speed time series 51 time series are combined 
in the parameterization dataset (DS1). This dataset was used for 
model building and parameterization. 15 DS1-time series, for which 
wind speed data are available for more than 85% of all days in the 
investigation period, served as reference time series (DS1ref). The 
DS1ref-data subset was used to complete and prepare all other wind 
speed time series. Wind speed values measured at 14 DWD-stations 
were combined to the validation dataset (DS2) and used to validate 
the model developed based on the data contained in DS1.

In the investigation period, wind speed (Umeas) was not always 
measured at the standard measurement height of 10 m above ground 
level (a.g.l.) defined by the World Meteorological Organization 
(WMO). Moreover, at a number of stations the measurement 
height changed within the investigation period. In these cases, the 
measurement height at which wind speed was measured at the end of 
the investigation period was defined as “representative” (hrepr) for the 
respective station.

In Figure 3 important characteristics of the measurement sites are 
summarized as boxplots. The stations are located in the ϕ-range 96 
m to 1481 m a.s.l. (Figure 3a) with the ϕ-median being 475 m. Two 
stations (Feldberg, Hornisgrinde) are located above 1100 m. The hrepr-

median is 10 m a.g.l. (Figure 3b). However, at a few sites, wind speed 
measurements have been carried out far off the WMO-standard, e.g. 
3 m a.g.l. at the stations Dobel and Isny or 48 m a.g.l. at the station 
Karlsruhe.

None of the analyzed wind speed time series was complete. 
Data availability (DA) ranges between 13% corresponding to about 
4 years and 8 month (station Hornisgrinde) and 99.7% (Figure 3c). 
The median of station-specific mean values of Umeas ( measU ) is 2.5 m/s 
(Figure 3d) and the associated median of the variance of Umeas (σ2) 
displayed in Figure 3e is 1.5 (m/s)2. Since wind speed values are 
non-normally distributed, the station-specific medians of Umeas ( measU~

) are presented in Figure 3f in addition to measU . The median of 
measU~  

is slightly lower (2.2 m/s) than the median of measU . The medians of 
skewness (v) and kurtosis (w) of Umeas are 1.5 (Figure 3g) and 3.0 
(Figure 3h). The shape of the v-boxplot indicates that all empirical 
wind speed distributions are right-skewed which is supported by the 

measU~ -values being mostly lower than the measU -values. The w-boxplot 
indicates that all empirical wind speed distributions are more peaked 
than the normal distribution.

Data preparation
Since time series of wind speed measured near the ground 

are known to have problems with temporal homogeneity, spatial 
representativity and completeness, a comprehensive data preparation 
process preceded the statistical analysis and model building. 
Inhomogeneities and temporal discontinuities in wind speed time 

Figure 2: The study area Baden-Wuerttemberg in the southwest of Germany 
and the locations of the 65 wind speed measuring stations.

Figure 3: Boxplots illustrating characteristics of the measuring stations and 
corresponding wind speed time series: (a) elevation (ϕ), (b) representative 
measurement height (hrepr), (c) data availability (DA), (d) mean wind speed 

measU , (e) wind speed variance σ2, (f) median wind speed measU~ , (g) skewness 
(v) of Umeas, (h) kurtosis (w) of Umeas.
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series can arise from station relocation [44,45], instrument change 
[44], changes in measurement height [44-47], changes in sampling 
frequency [45] and changes in the surroundings of the measurement 
sites [5,45,48]. It is critical that all wind speed data are consistent 
before analysis. Especially, adjusting the actual measurement height 
to a common height is of great importance [44,46,47].

Data preparation started with completing the 15 wind speed time 
series contained in DS1ref by using the ensemble learning method 
bagging implemented in the Matlab® Statistics Toolbox (The Math 
Works Inc., Natick, MA, Release 2014a). Bagging stands for bootstrap 
aggregating and enhances the predictive capabilities of machine 
learning algorithms used in regression [49,50].

Before gap filling started, it was made sure that the Bagging 
models are able to reproduce the data of the incomplete time series 
with high accuracy. The coefficient of determination (R2) which was 
calculated between the available measured data and the modeled 
parts of the incomplete time series was always higher than 0.90 during 
the gap filling process. Up to six wind speed time series measured at 
neighboring DWD-stations were used to mutually fill gaps in DS1ref 
-time series.

Following gap filling, the completed DS1ref -time series were 
tested for homogeneity. The search for inhomogeneities started 
with the analysis of the DWD-metadata describing station history. 
Unfortunately, the documentation of station history was often poor 
and only of limited use because the metadata provide only basic 
information on data quality, station relocations and changes in 
measurement height.

In a second step, inhomogeneities were searched and identified by 
using the RHtestsV4 software package implemented in R [51] by [52]. 
The methodology is based on the penalized-maximal-F-test [53,54] 
and quantile-matching [55]. The penalized-maximal-F-test is used 
to control whether there are shifts in the trend component during 
the measurement period, while considering annual cycle, linear trend 
and lag-1 autocorrelation. After the detection of shifts in the trend 
component, quantile-matching adjusts the empirical distributions of 
all inhomogeneous time series segments to the empirical distribution 
of the last homogeneous time series segment.

After completing the DS1ref -data homogenization process, the 
linear trend was removed from the wind speed time series because the 
proposed statistical model does not consider the trend component. 
The 15 completed, homogenized and detrended DS1ref -time series 
were then used to fill the gaps in all other 50 wind speed time series 
with DA < 85%. Bagging was applied again to fill the data gaps by 
using up to six DS1ref -time series. Then the completed time series 
were tested for homogeneity and detrended as described above.

The Hellmann power law [56] was used to extrapolate wind 
speed to the WMO-standard wind speed measurement height of 10 
m a.g.l. at all stations where necessary. Since the application of the 
Hellmann power law requires wind speed data from a second height 
a.g.l., use was made of the area-wide available ERA-Interim reanalysis 
wind data [57] provided by the European Centre for Medium-Range 
Weather Forecasts (ECMWF). The reanalysis data is interpreted as an 
indicator of the kinetic energy resource available from higher parts of 
the troposphere that has a determining influence on the near-surface 
wind speed field.

In the study area, the reanalysis data have a spatial resolution of 
0.125O (~13 km). After pre-testing the predictive power of the two 
horizontal ERA-Interim wind vector components (u, v) available at 
the 700 hPa, 850 hPa and 950 hPa pressure levels, which are affected 
only to a limited extent by surface properties, it turned out that the 
850 hPa level horizontal wind vector component data (u850hPa, v850hPa) 
were the most informative predictors for the target variables modeled 
in this study. Thus, u850hPa- und v850hPa-values available for 00 UTC, 06 
UTC, 12 UTC and 18 UTC in the period 1979-01-01 to 2010-12-31 
were used to calculate daily mean values of wind speed (U850hPa). As 
done by [58], the absolute height a.g.l. associated with daily U850hPa-
values was derived from the ERA-Interim geopotential height layer 
by converting geopotential height (gpdm) to geometric height (h850hPa) 
in meters a.g.l. In order to make the U850hPa -data usable as predictor 
variable for the final wind speed model, it was interpolated on a 50 m 
resolution grid. It was shown by [59] that U850hPa changes only little on 
scales comparable to the size of the study area, so the interpolation 
was thought of being justified.

Based on daily Umeas- and U850hPa -values at the nearest ERA-
Interim grid points to the positions of the 65 DWD-stations, the 
median value of the Hellmann exponent )E~( was calculated for all 
stations. The equation used to calculate E~  is:

      (1)

Once station-specific E~  is known, it can be used to calculate daily, 
station-specific U10m -values:

      (2)

The values of E~ determined for the 65 stations ranged between 
0.06 (station Hornisgrinde) and 0.66 (station Triberg). At all grid 
points in the study area, E~ varies between 0.06 and 0.70.

Effects of atmospheric stability on the Hellmann power law [47] 
were not considered because the data that is needed to adequately 
take atmospheric stability into account were not available.

Probability distribution fitting
To provide probabilistic estimates of the long-term spatial 

variability of the near-surface wind speed pattern in the study 
area, 48 cumulative distribution functions (CDF) were fitted to 
the empirical cumulative distribution functions (CDFemp) derived 
from the wind speed time series. The EasyFit software (MathWave 
Technologies, Dnepropetrovsk, Ukraine, version 5.5) was used to 
carry out the estimation of CDF-parameters as well as to calculate 
CDF and evaluate the goodness-of-fit. Basic information on the 
fitted distributions, the number of CDF-parameters and the fitting 
methods implemented in the EasyFit software are summarized in 
Table 3 according to [60]. Depending on the distribution, the EasyFit 
software applies maximum likelihood estimation (MLE), least square 
estimation (LSE), method of moments (MOM) and method of 
L-moments (LMOM) to fit CDF to CDFemp.

For each of the 65 stations the goodness-of-fit of the 48 CDF 
was evaluated by (i) applying the Kolmogorov-Smirnov (KS) Test 
[24,34,61,62] and (ii) analyzing probability-probability (P-P) plots 
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which plot CDF and CDFemp against each other [20,63]. The decision 
to use the KS-Test for goodness-of-fit evaluation was made because 
the KS-Test weights central tendencies more than other commonly 
used goodness-of-fit tests like the Anderson-Darling test [64]. The 
Anderson-Darling test weights observations in the distribution tails 
more than the KS-Test.

As will be demonstrated in the Results and Discussion section, the 
five-parameter Wakeby-distribution [65] shows a better performance 
than all other distributions. The Wakeby-distribution (WK5) is 
therefore chosen to model statistical properties of the empirical wind 
speed distributions. The Wakeby-distribution can be defined by its 
quantile function as [66-70]:

( ) ( )[ ] ( )[ ]δ−β −−
δ
γ

−−−
β
α

+ε= F11F11Fx
 (3)

where F is the non-exceedance probability with x(F) being the 
F-associated quantile value, α, β, γ and δ are parameters and ε is the 
location parameter. This parameterization exhibits WK5 being a 
generalization of the Generalized Pareto distribution for α = 0 or γ=0. 
To be a valid quantile function the conditions γ ≥ 0 and α + γ ≥ 0 must 

hold. The quantile function is defined for the domain ε ≤ x < ∞ if δ ≥ 0 
and γ > 0, ε ≤ x ≤ ε + α/β − γ/δ if δ < 0 and γ = 0 [67-69].

Geographic data
For WK5-model building, the predictive power of the predictor 

variables listed in Table 4 was tested. In addition to ϕ, the orographic 
features aspect (η), curvature (φ) and slope (σ) were deduced from a 
digital terrain model (DTM) on a 50 m resolution grid for the entire 
study area. They were calculated using the ArcGIS® 10.2 software 
Spatial Analyst extension. For all geospatial data sets the same 
coordinate system (Gauß-Krüger, reference ellipsoid Bessel 1841) 
was defined.

Following [71], “effective” z0- and φ-values were calculated for 
different directional sectors. This was done to account not only for 
local surface roughness and terrain characteristics at each grid point 
itself but also for the surface roughness and terrain characteristics in 
the upwind fetch. The effective roughness length (z0,eff) and effective 
curvature (φeff) were calculated for the four direction sectors (NE 
(0O-90O), SE (91O-180O), SW (181O-270O), NW (271O-360O)) and for 
four different distance ranges (d1: 50-250 m; d2: 251-500 m; d3: 251-
1000 m; d4: 501-1000 m) for all grid points.

Distribution Abbreviation 
(no. parameters), fitting method Distribution

Abbreviation 
(no. parameters), 
fitting method

Beta BE4, MLE Laplace LA2, MOM

Burr
BU3, MLE

Levy
LE1, MLE

BU4, MLE LE2, MLE
Cauchy CA2, MLE Log-Gamma LG2, MOM

Chi-Squared
CH1, MOM Logistic LO2, MOM
CH2, MLE

Log-Logistic
LL2, LSE

Dagum
DA3, MLE LL3, MLE
DA4, MLE

Lognormal
LN2, MLE

Erlang
EL2, MOM LN3, MLE
EL3, MLE Log-Pearson LP3, MOM

Error ER3, MLE Nakagami NA2, MOM
Error Function EF1, MOM Normal NO2, MLE

Exponential
EX1, MOM Pareto (1st kind) PAF2, MLE
EX2, MLE Pareto (2nd kind) PAS2, MLE

Fatigue Life
FL2, MLE

Pearson Type 5
PFi2, MLE

FL3, MLE PFi3, MLE

Frechet
FR2, LSE

Pearson Type 6
PSi3, MLE

FR3, MLE PSi4, MLE

Gamma
GA2, MOM Pert PE3, MLE
GA3, MLE Phased Bi-Exponential PBE4, LSE

Generalized Extreme Value GE3, LMOM Phased Bi-Weibull PBW6, LSE

Generalized Gamma
GG3, MLE Power Function PF3, MLE
GG4, MLE

Rayleigh
RA1, MOM

Generalized Logistic GL3, LMOM RA2, MLE
Generalized Pareto GP3, LMOM Reciprocal RE2, MLE
Gumbel Max GMX2, MOM Rice RI2, MLE
Gumbel Min GMN2, MOM Student's t ST1, MOM
Hyperbolic Secant HS2, MOM Triangular TR3, MLE

Inverse Gauss
IG2, MOM Uniform UN2, MOM
IG3, MLE Wakeby WK5, LMOM

Johnson SB JSB4, MOM
Weibull

WE2, LSE
Johnson SU JSU4, MOM WE3, MLE
Kumaraswamy KU4, MLE

Table 3: Distributions with abbreviation (number of distribution parameters) and method used by the EasyFit software to fit CDF to CDFemp [60].
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Here, “effective” means that the z0- and φ-values available on 
the 50 m resolution grid were averaged over d1-d4 because surface 
roughness and terrain characteristics in the immediate vicinity of 
the DWD-stations strongly affect local wind conditions. The local, 
isotropic z0-values listed in Table 1 were used for the z0,eff -calculations. 
The consideration of different directional sectors in the z0,eff - and 
φeff -calculations introduces a minimum of directionality into the 
proposed model that otherwise has no directional dependence.

Wind speed model building
The proposed statistical wind speed model uses orographic 

features, surface roughness and reanalysis data to predict WK5-
parameters on a 50 m resolution grid in the entire study area. 
The model is developed by making use of the Ensemble Learning 
algorithm for least squares boosting (LSBoost) implemented in the 
Matlab® Statistics Toolbox. LSBoost uses of a sequence of regression 
trees called weak learners (B) with the aim to minimize the mean-
squared error (MSE) between target variable Y and the aggregated 
prediction of the weak learners (Ypred) based on methods described in 
[72]. LSBoost starts with an initial guess of the aggregated prediction 
of the median of the target variable ( Y~ ) as a function of the predictor 
variables (X). Then it combines multiple regression models B1, …, Bm 
in a weighted manner to improve its overall predictive performance 
[73]:

( ) ( ) ( )∑
=

ρν+=
M

1m
mmpred XBXY~XY    (4)

with pm being the weight for model m, M is the total number of 
weak learners, ν with 0 < ν ≤ 1 being the learning rate.

The LSBoost-models were parameterized using DS1-data and the 
corresponding values of surface roughness, orographic features and 
reanalysis data at and in the surroundings of the wind speed measuring 
stations. The predictive performance of the final LSBoost-models 
(BM) was evaluated using DS1- and DS2-data. Although finding 
the optimal number of weak learners is a trial and error process, a 
low weak learner number (M < 100) should already be sufficient to 
reasonably approximate Y. Otherwise, a significant improvement of 
the prediction result will not be achieved by increasing the number 
of weak learners. LSBoost was chosen to model the WK5-parameters 
because (i) it is insensitive to outliers, (ii) its stability is maintained 
during the adjustment process as only simple regression models are 
added, (iii) irrelevant predictor variables are sorted out and (iv) no 
data transformation is necessary. Thus, it can be used to reasonably 
model low quality data [74].

Before the WK5-model building process started, the strength 
of collinearity among the available predictor variables was tested by 
evaluating the variance inflation factor (VIF) and the conditions index 
(CI) in combination with variance-decomposition proportions (VD) 
according to [75]. By applying these tests, collinearity as quantified by 
VIF > 2 and/or CI > 30 with VD > 0.5 was not identified among the 
predictor variables used in the final LSBoost-models.

Since WK5 is a five-parameter distribution, it can be fitted to a 
large number of shapes. With the choice of appropriate parameters, 
WK5 can mimic most of the commonly used distributions [65,67]. 
However, the determination of its parameters might not always 
be stable. In order to enhance the stability of the WK5-parameter 
estimation, the WK5-parameters were modeled separately following 
[70] with a similar but simplified approach. First, the left part of the 
right-hand side of equation 3 (YL) which is represented by α, β and ε 
was modeled for F = 0.25:

      (5)

The separation of YL from the right part of the right-hand side 
of equation 3 (YR) is justified because YL is quasi-constant for F~≥ 
0.25, i.e. distinct changes of YL are expected only for empirical values 
located in the 1st quartile [70].

Next, YR, which is represented by γ and δ, was modeled for F= 
0.50 (YR1), F = 0.75 (YR2) and F = 0.99 (YR3). Knowing YR1, YR2 and 
YR3, the following system of nonlinear equations can be solved to 
determine γ and δ:

      (6)

After modeling the two parts of the right-hand side of equation 
3 separately, YL and YR were recombined to yield the Wakeby-
distribution with modeled parameters (WK5mod). Following 
[33,76,77], the predictive performance of WK5mod was evaluated in 
DS1 and DS2 by the mean error (ME), mean absolute error (MAE), 
root mean square error (RMSE) and R2.

ID Predictor variable Symbol YL YR1 YR2 YR3

1 Aspect η
2 Curvature, local φ
3 Curvature, effective, NE, d1 φeff,NE,d1 • • • •

4 Curvature, effective, SE, d1 φeff,SE,d1 •

5 Curvature, effective, SW, d1 φeff,SW,d1

6 Curvature, effective, NW, d1 φeff,NW,d1 • •

7 Elevation ϕ • • • •

8 Latitude λ
9 Longitude ψ
10 Roughness length, local z0 •

11 Roughness length, effective, d1 z0eff,d1

12 Roughness length, effective, d2 z0eff,d2

13 Roughness length, effective, d3 z0eff,d3

14 Roughness length, effective, d4 z0eff,d4

15 Roughness length, effective, NE, d1 z0eff,NE,d1 • • • •

16 Roughness length, effective, SE, d1 z0eff,SE,d1 • •

17 Roughness length, effective, SW, d1 z0eff,SW,d1 • • • •

18 Roughness length, effective, NW, d1 z0eff,NW,d1 •

19 Roughness length, effective, NE, d2 z0eff,NE,d2

20 Roughness length, effective, SE, d2 z0eff,SE,d2

21 Roughness length, effective, SW, d2 z0eff,SW,d2

22 Roughness length, effective, NW, d2 z0eff,NW,d2

23 Slope σ
24 Topographic exposure τ • • •

25 Median wind speed (850 hPa level) hPa850U~ • •

Table 4: Predictor variables available for this study. The • marks the predictor 
variables that were used in the final LS Boost-models to reproduce YL (BMYL), YR1 
(BMYR1), YR2 (BMYR2) and YR3 (BMYR3).
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The workflow including data preparation, probability distribution 
fitting and wind speed model building is summarized in Figure 4.

Results and Discussion
Probability distribution fitting

The absolute frequency of all CDF which ranked at least once 
best after evaluating the goodness-of-fit by the KS-Test statistic D is 
shown in Figure 5. It is obvious that WK5 could be fitted most often 
(at 26 stations) best to CDFemp. Moreover, based on the evaluation of 
D, WK5 always ranked between #1 and #10 after being fitted to all 65 
CDFemp. These findings are in accordance with [20] who also report 
a good performance of WK5 in comparison to other distributions. 
Only the Johnson SB distribution [78] could also be fitted best to a 
noteworthy number of CDFemp (at 15 stations). Since the varieties of 
the Weibull-distribution (WE2, WE3) never ranked #1, they are not 
shown.

To illustrate the findings of the KS-Test, Figure 6 shows boxplots 
of D for all distributions that at least once ranked #1 plus the boxplot 
derived from the D-values determined from fitting WE2 which was 
used in numerous previous studies as mentioned in the Introduction 
(results obtained for WE3 are very similar to the results obtained 
for WE2 and therefore not shown). It is obvious that the D-median 
of 0.015 obtained from fitting WK5 to CDFemp is the lowest. In 
comparison to that, the D-median for WE2 is 0.086. In addition 
and in comparison to most of the other displayed distributions, 
the variability of D (e.g. as illustrated by the interquartile range) 
determined from WK5-fitting is also low.

The boxplots presented in Figure 7 are based on R2-values which 
were calculated from P-P plots produced for all distributions that 
at least once ranked #1 plus WE2. These boxplots are similar to the 
boxplots presented by [20] and further confirm the WK5-capabilities 
to reasonably characterize CDFemp. The median of WK5-related R2-
values is 1.000; the interquartile range is represented by R2 > 0.999.

To demonstrate the flexibility of WK5 in fitting U10m -distributions, 
Figure 8 shows relative frequency histograms of U10m from six stations 
contained in DS1 that were fitted using WK5-probability density 
functions (WK5pdf). At station Bad Herrenalb (Figure 8a), the general 
wind speed level was generally very low and varied in the range 0 
m/s to 4 m/s. The corresponding empirical frequency distribution is 
right-skewed with relative frequency values peaking below 1 m/s. It is 

Figure 4: Schematic representation of the workflow including data 
preparation, probability distribution fitting and wind speed model building.

Figure 5: Absolute frequency of CDF which ranked at least once best (Rank 
#1) after being fitted to CDFemp.

Figure 6: Boxplots illustrating the variability of the KS-Test statistic D for CDF 
that ranked at least once best after being fitted to CDFemp as well as a box plot 
for D derived from fitting WE2 to CDFemp.
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obvious that WK5 fits the relative frequency distribution reasonably 
well. In contrast to that, Figure 8b shows the relative frequency 
distribution from station Feldberg. At this station which is located 
on the top of the Feldberg,       was highest. The wind speed range on 
the x-axis includes U10m -values up to 24 m/s. The relative frequency 
distribution is also skewed to the right and peaks in the U10m -range of 
5 m/s to 6 m/s. The relative frequency distributions shown in Figure 
8c (station Konstanz) to Figure 8f (station Schluchsee) exemplarily 
represent U10m -ranges between the rather low U10m -values recorded 
at station Bad Herrenalb and the high U10m-values from station 
Feldberg. The relative frequency distributions are also right-skewed 
without exception and more peaked than the normal distribution.

The Wakeby-distribution has the ability to fit almost all quantiles 
of the presented relative frequency distributions with sufficient 
accuracy. Especially, wind speed values located in the 2nd to 4th quartile 
are fitted well which is crucial for wind energy applications [2,20]. 
However, the limited potential of WK5 to fit the lowest levels of wind 
speed is obvious. This behavior of WK5 can be attributed to the facts 
that (i) its domain of definition is bounded by ε at the lower tail and 
(ii) the lowest wind speed values are most affected by the immediate 

surroundings of the measurements sites, which cannot be properly 
reproduced by WK5.

Wind speed model development
The selection of the final predictor variable combinations was a 

trial and error process. It started with keeping M = 20. The final BM-
configuration was chosen after comparing the predictive performance 
of several configurations with different combinations of predictor 
variables. The predictor variable combination which simultaneously 
gave the lowest MAE-values in DS1 and DS2 was selected as predictor 
variable combination to build BM. After the final predictor variable 
combinations were certain, M was increased to further minimize 
MAE. The final number of weak learners varied between M = 30 for 
modeling F = 0.75 and M = 97 for modeling F = 0.99.

The predictor variables having the strongest univariate linear 
association (|R| > 0.5) with any of YL, YR1, YR2 and YR3 were τ, φeff,NE,d1 
and φeff,SE,d1. The predictor variable combinations which reproduced 
YL, YR1, YR2 and YR3best are summarized in Table 4. They were fed 
into the final LSBoost-models BMYL, BMYR1, BMYR2 and BMYR3 to 
reproduce the WK5-parameters associated with the wind speed time 
series contained in DS1 and DS2.

The combinations of predictor variables that were used in this 
study to model near-surface wind speed distributions are similar to 
combinations of predictor variables used in previous studies. The 
regression equation-based statistical wind field model reported by 
[79] estimates mean annual wind speed as a function of elevation, 
latitude, longitude, surface shape and surface roughness in Germany 
on a 200 m resolution grid. Without accounting for surface roughness, 
[80] used generalized additive models to estimate maximum daily 
gust speed (98 percentile) in Switzerland on a 50 m resolution grid 
based on landform, elevation, curvature and slope.

To examine the modeling accuracy of WK5mod, it was used 
to estimate CDFemp. The quality of WK5mod-estimated CDFemp 
(CDFmod) was evaluated by ME, MAE, RMSE and R2. The results 
of this evaluation are given in Table 5 for various quantiles. As can 
be expected, the prediction results are in most cases better for DS1 
than for DS2. They demonstrate that there is a tendency that with 
increasing quantiles the absolute prediction error increases, both in 
DS1 and DS2. This is mainly attributable to increasing wind speed 
represented by increasing quantiles. However, the prediction errors 
are generally small and, except for F = 0.99, in the typical range of 
wind speed measuring accuracy. Except for F  =  0.01 associated 

Figure 7: Boxplots illustrating the variability of the coefficient of determination 
(R2) which was calculated from the comparison of CDF of the distributions 
specified on the x-axis with CDFemp in P-P plots.

Figure 8: Relative frequency histograms of U10m presented for the six 
stations (a) Bad Herrenalb, (b) Feldberg, (c) Konstanz, (d) Lahr, (e) Stötten 
and (f) Schluchsee which are included in DS1.The black lines represent 
corresponding WK5pdf.

Data set Quantiles ME (m/s) MAE (m/s) RMSE (m/s) R2

DS1 0.01 -0.03 0.15 0.26 0.75
0.25 -0.02 0.14 0.21 0.96
0.50 0.00 0.14 0.19 0.98
0.75 0.01 0.18 0.24 0.98
0.99 0.04 0.31 0.40 0.98 

DS2 0.01 -0.03 0.17 0.22 0.59
0.25 0.03 0.10 0.13 0.92
0.50 0.09 0.16 0.20 0.93
0.75 0.11 0.27 0.34 0.90
0.99 0.15 0.78 0.96 0.80

Table 5: Mean error (ME), mean absolute error (MAE), root mean square error 
(RMSE) and coefficient of determination (R2) calculated from the comparison of 
CDFmod with CDFemp of the wind speed time series included in DS1 and DS2.

10mU
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with DS1, R2 is at least 0.80, which further indicates that WK5mod 
reasonably reproduces the analyzed quantiles. To illustrate the 
modeling abilities of WK5mod for individual stations, Figure 9 shows 
CDFmod plotted against CDFemp of six stations contained in DS2 which 
were not part of the model parameterization process. The closer the 
data to the 1:1 line, the better the agreement between CDFmod and 
CDFemp. It is clear, that if distinct deviations of the presented data 
from the 1:1 line occur, then they occur in the low quantile range 
(e.g. Figures 9b,9f). The low quantiles correspond to low wind speed 
values which are most probably a direct result of small-scale surface 
and terrain characteristics that are not always correctly reproduced 
by WK5mod. Furthermore, its domain of definition causes WK5 to be 
prone to overestimate the frequency of lower wind speeds [20].

Since WK5mod is well able to reproduce CDFemp of all stations 
included in DS1 and DS2, BMYL, BMYR1, BMYR2 and BMYR3 were used 
to model WK5-parameters based on the selected predictor variable 
combinations. This basically opens the possibility to model all wind 
speed quantiles in the entire study area. As an example, WK5mod 
-modeled      -values are shown in Figure 10 in a detailed map at 
a resolution of 50 m × 50 m. As expected, highest 

10mU  -values (7.3 
m/s) are found on the tops of the highest elevations in the study area 
(ϕ > 1100 m) like the Feldberg region in the southern part of the 
Black Forest and in the vicinity of the Hornisgrinde (5.8 m/s) which 
is the highest elevation in the northern part of the Black forest. The 
lowest 10mU -values are found in a number of narrow, forested valleys 
in the Black Forest where 

10mU  drops down to 0.3 m/s. In and around 
Stuttgart, being the capital and the largest urban area of Baden-
Wuerttemberg, 

10mU  is mostly below 1.5 m/s.

Although the proposed WK5-model seems to be well able to 
capture main features of the near-surface wind speed field in the study 
area, it is far off from being fully developed. Future versions of the 
model should be built on a monthly basis to better account for seasonal 
variations of wind speed in Germany [81]. Although WK5mod already 
accounts to a minor degree to directional variations in wind speed, 
more needs to be done to include wind direction in the modeling 
process. First of all, even before model building, more stations 

Figure 9: P-P plots of CDFmod versus CDFemp for six stations included in DS2: 
(a) Dogern, (b) Lindau, (c) Neuhausenob Eck, (d) Pforzheim-Ispringen, (e) 
Sipplingen, (f) Weilheim-Bierbronnen.

where wind speed and wind direction are measured simultaneously 
with high quality should be established in all parts of the study area. 
Thus, a more complete description of the statistical properties of the 
near-surface wind field, especially in the low mountain ranges, can 
be achieved by modeling joint frequency distributions of wind speed 
and wind direction instead of modeling the frequency distribution of 
wind speed alone [4,18,41,82].

Conclusions
The proposed statistical model is able to simulate near-surface 

wind speed quantiles in a large area with complex terrain with 
sufficient accuracy. The parameters of the Wakeby-distribution were 
chosen to be modeled by LSBoost-models because the Wakeby-
distribution demonstrated its superior abilities in fitting all empirical 
wind speed distributions available for this study. The LSBoost-models 
reasonably reproduce the parameters of the Wakeby-distribution as a 
function of the predictor variables (i) roughness length, (ii) elevation, 
curvature and topographic exposure and (iii) ERA-Interim wind 
speed at the 850 hPa level. These predictor variables are available in 
similar versions in many parts of the world. Therefore, it is assumed 
that the model can be transferred to other wind speed data sets.

Since the modeled Wakeby-distribution parameters are available 
at every grid point in the entire study area, detailed maps of wind 
speed quantiles (not only the median) can be produced. Due to their 
high spatial resolution, these maps provide useful basic information 
on the near-surface wind field for applications like urban planning, 
regional planning, air pollution control or civil engineering. There 
is also potential to use the methodology for wind site assessment, 
because during the model building process the Hellman exponent 
is calculated in the entire study area. It can be used to extrapolate 
modeled 10 m a.g.l. wind speed fields to heights where wind turbines 
harvest kinetic energy contained in the wind. A major task for the 
future will be the refinement of the proposed model towards the 

Figure 10: Map of 10mU  as modeled for the entire study area (50 m resolution 
grid).

10mU



Austin J Earth Sci 2(1): id1006 (2015)  - Page - 010

Schindler D Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

monthly-based inclusion of wind speed and wind direction measured 
on sub-daily scales.
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