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Abstract

Treatment options for the management of intracranial aneurysms (IA) 
remain associated with significant morbidity and mortality. As a result, there is a 
need to identify biochemical markers predictive of the presence of IAs and the 
risk of rupture. Genetic factors play a key role in IA pathogenesis, as evidenced 
by the increased susceptibility to IA formation and rupture in the familial form 
of the disease. microRNAs (miRNAs), which modulate gene expression, have 
been demonstrated to be differentially expressed in multiple disease states. 
To date, little data exists pertaining to miRNA expression and IAs. We review 
the literature examining miRNA expression and IA formation, progression, and 
rupture. The relationship between miRNA expression profiles and the specific 
molecular and cellular processes driving IA genesis are examined. The potential 
clinical relevance of miRNA is also discussed, as it relates to improving the 
means by which the risk of rupture is estimated.
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clinical picture of the individual patient also contributes to decision 
making, as a history of hypertension, smoking, alcohol abuse, and 
positive family history increase the risk of rupture [1].

In an attempt to overcome the limitations of the current 
methodology, there has been a concerted effort to further delineate 
the mechanisms of aneurysm formation, growth, and rupture. These 
investigations have largely focused on the molecular and cellular 
pathways involved in vascular disease, including, the chronic and 
pathologic inflammatory response, hemodynamic stress, and the 
identification of predictive biomarkers. Furthermore, the recognition 
of genetic markers associated with IAs has played an increasingly 
important role in the understanding of their pathogenesis. microRNAs 
(miRNAs) represent one such class of molecular regulating molecules 
involved in the gene expression underlying aneurysm formation 
(Table 1).

We review the current data relating to miRNA as it relates to IA 
progression and rupture. The association between miRNA expression 
and the specific molecular and cellular processes driving IA formation 
and rupture are discussed. We conclude by examining the potential 
utility of miRNAs as clinically relevant biological markers in the 
management of IAs.

MicroRNA Suppression of mRNA 
Translation

MicroRNA (miRNA) are small (18-25 nucleotides), highly 
conserved, non-protein-coding RNAs that play a critical role in the 
post-transcriptional regulation of gene expression [6-10]. Currently, 
it is estimated that between 30 – 75 % of human gene expression is 
regulated by miRNA [7,8]. There are approximately 1,000 miRNAs 
involved in the regulation of human gene expression, of which 800 
have been identified and sequenced [11]. miRNA is expressed in 
both tissue- and phase-specific patterns that reflect the specific 
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Introduction
Intracranial aneurysms (IAs) affect 3-6% of the general population 

and have an annual rupture rate of 1-3%, resulting in approximately 
27,000 aneurysmal subarachnoid hemorrhages (aSAH) in the United 
States each year [1-3]. The morbidity and mortality of aSAH remains 
high, with as many as 50% of cases resulting in death, and up to 50% 
of survivors suffering significant permanent disability [4]. Current 
microsurgical and endovascular treatment of IAs remains associated 
with significant risk, which may exceed the annual risk of rupture [5]. 
Thus, there is a need for both an improved understanding of factors 
contributing to rupture and the development of noninvasive means 
by which to identify those aneurysms with a higher risk of rupture.

Currently, establishing the risk of rupture for an individual 
aneurysm is imprecise and depends on morphologic features of the 
aneurysm and an assessment of the clinical history of the patient. 
Aneurysm location, irregularities of the aneurysm dome, and size 
remain the most relied upon features, with increasing size and 
posterior circulation location being associated with a higher risk. The 
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physiological processes they regulate [7,8]. miRNA suppresses 
messenger RNA (mRNA) translation into protein through low target 
complementarity and regulates mRNA degradation through high 
miRNA-mRNA complementarity [12].

A detailed analysis of the pathways involved in miRNA synthesis 
and mRNA binding are beyond the scope of this review, however, 
the following provides a short synopsis of the processes. miRNAs are 
transcribed by RNA polymerase II within the nucleus and miRNA 
maturation then depends on two RNase III endonucleases, Drosha 
and Dicer [13-16]. In the nucleus, Drosha processes primary-
miRNA into pre-miRNA, while Dicer then cleaves pre-miRNA into 
22-nucleotide double-stranded mature miRNA within the cytoplasm 
[17]. The miRNA guide strand is incorporated into an RNA-induced 
silencing complex (miRISC), which will direct miRNA to the target 
mRNA for degradation or translation inhibition [18]. miRNAs may 
also be relocated to the nucleus or exchanged with other cells via 
exosomes. miRNA acts on mRNA by binding to the 3’-untranslated 
region (UTR) of the target mRNA to be suppressed [9,10]. Multiple 
miRNAs can bind to the same 3’-UTR of a target mRNA in a 
cooperative fashion, resulting in greater stability or in more effective 
inhibition of translation. Each miRNA can regulate many different 
target mRNAs [19].

Changes in miRNA expression in patients with IAs is well-
documented, however, the specific cellular functions and pathways 
influenced are largely unknown [20]. Multiple pathologic processes 
have been implicated in the formation of IAs, including, activation of 
the immune/inflammatory response, organization of the extracellular 
matrix (ECM), endothelial cell dysfunction, tissue growth factor-β 
(TGF-β) signaling, vascular smooth muscle cell (VSCM) phenotypic 
changes, and apoptosis [21-25]. Analysis of the miRNAs linked to 
IAs demonstrates an association between these miRNAs and these 
cellular and molecular mechanisms [20]. 

Differential Expression of miRNA in 
Intracranial Aneurysms

A significant subset of IAs is familial, highlighting the underlying 
contributions of genetics to their formation, progression, and 
rupture. Compared to the general population, first-degree relatives 
of IA patients possess a three- to fivefold higher risk of IA [26,27]. 
Multiple authors have identified genetic polymorphisms associated 
with an increased risk of IA rupture [28-31]. Furthermore, there is 
sufficient evidence to link changes in gene expression to the molecular 
mechanisms involved in IA pathogenesis, including, endothelial and 
VSMC dysfunction, ECM remodeling, and inflammation. Chen 
et al. reported differential expression of 2129 genes in the setting 
of ruptured IAs [32]. 1062 genes were upregulated and 1057 genes 
were downregulated. Li et al. demonstrated significant differences in 
the expression of 1,160 genes in the tissue of unruptured aneurysms 
compared to normal blood vessels [33]. Among these differentially 
expressed genes were inflammation-related genes and genes related 
to the ECM [33].

Examination of IA genetics has identified links between IAs and 
miRNA expression. Li et al. demonstrated that the CC genotype of 
miRNA-34b/c rs4938723 was significantly associated with a decreased 
risk of IA compared to the TT genotype [34]. Lee et al. reported 
differential expression of miRNAs in aneurysm tissue compared to 
control arteries in a rat model of IA [35]. IA tissue demonstrated 
greater than 200% over expression of 14 miRNAs and downregulated 
expression of greater than 50% for 6 miRNAs compared to controls.

Comparing IAs and control vessels, Liu et al. demonstrated 
distinct patterns of global expression in 157 miRNAs [20]. IA 
tissue was associated with upregulation of 72 and downregulation 
of 85 miRNAs compared to control vessel tissue. Of those miRNAs 
differentially expressed in the IAs, there were multiple miRNAs 
associated with endothelial and VSMC function. miRNAs associated 
with endothelium, including, members of the let-7 family of 

microRNA Normal Role Upregulation/ Downregulation 
in IA Role in IA Pathogenesis Source

miR-1 VSMC differentiation, expression of contractile 
proteins Downregulated [8, 78]

miR-133 Prevents VSMC proliferation, inhibits change 
from contractile to synthetic VSMC phenotype Downregulated [79]

mirR-7 Negative regulator of collagen expression in 
dermal fibroblasts Downregulated [58, 80]

miR-29
Post-transcription suppression of elastin and 

ECM protein genes; miR-29b suppresses MM2 
expression; miR-29a related to immune function

Downregulated in human IA 
specimens; upregulated in murine 

cardiac models
Increased levels found in plasma of smokers. [8-10, 35, 81-

87, 100]

miR-34a Tumor suppressor Upregulated
Associated with decreased SM22a protein, 

which normally maintains VSMCs in contractile 
phenotype

[89-94]

miR-155 Modulates endothelial cell cytoskeletal 
organization in response to shear stress Upregulated

Induces expression of pro-inflammatory genes 
(with macrophage-derived expression of miR-

342-5p) during atherosclerosis progression
[53, 110,111]

miR-342-5p Expressed by activated macrophages as part of 
inflammatory response Upregulated

Contributes to atherosclerosis by inducing 
expression of pro-inflammatory genes (with miR-

155) such as NOS2
[109-111]

miR-181b Systemic administration to mice results in 
diminished vascular inflammation Downregulated Rapidly downregulated in human endothelial 

cells exposed to TNF-α [114, 115]

miR-16 Expressed by vascular endothelial cells; 
associated with angiogenesis Upregulated Unclear—potentially useful marker for assessing 

IA risk [58, 60]

miR-25 Expressed in airway SMCs, possibly in VSMCs Upregulated Unclear—potentially useful marker for assessing 
IA risk [58]

miR-24 Upregulated Suppresses TGF-β signaling, resulting in VSMC 
phenotypic switch [35, 88]

Table 1: Summary of miRNA and their associated regulatory function. Upregulation and downregulation in IAs and the role in IA pathogenesis is described.
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miRNAs, miR-17, miR-23b, miR-126, hsa-miR-24-1 and miR-222, 
were all differentially expressed in IA tissue [36,37]. miR-1, miR-10a, 
miR-125b, and miR-26a, which are associated with the proliferation, 
apoptosis, and phenotypic switching of VSMCs, were also found to 
have altered expression in IAs [20,38,39]. Gene functional annotation 
analysis was performed to identify a relationship between altered 
miRNA expression and molecular and cellular processes linked with 
aneurysm formation and rupture. Identified miRNAs were associated 
with blood vessel development, smooth muscle cell proliferation, 
and programmed cell death, response to oxidative stress, ECM 
organization, TGF-β signaling pathway, innate immune response, 
and leukocyte activation [20]. 

Jiang et al. compared the miRNA profiles of normal middle 
meningeal artery segments against those of wall samples from ruptured 
IA domes [8]. 30 miRNAs were identified as being differentially 
expressed between the normal controls and the IA walls. Interestingly, 
29 of those miRNAs were upregulated in the microarray analysis, 
while only one was downregulated. qPCR confirmed significant 
differences in expression for 18 miRNAs and failed to demonstrate 
statistically significant differences in the additional 12. Multiple 
miRNAs within the hsa-mir-1/has-mir-133a, hsa-mir-143/hsa-
mir-145, hsa-mir-23b/hsa-mir-24-1, and hsa-mir-29b-2/hsa-mir-29c 
clusters were downregulated two-fold in the IA specimens compared 
to normal vessel controls [8]. Additional analysis of differentially 
expressed miRNAs shed light on the molecular and cellular processes 
associated with these miRNAs. 11 miRNAs were associated with 
twelve cellular processes linked to aneurysm formation and rupture, 
including, inflammatory cell migration, endothelial dysfunction, and 
changes in VSMCs [8]. 

miRNA Expression Profiles and the 
Mechanisms of Intracranial Aneurysm 
Genesis
Endothelial dysfunction

IAs most commonly arise at vessel branch points, highlighting the 
role of perturbations of blood flow and shear stress in the pathologic 
vascular remodeling that is associated with aneurysm formation [40]. 
Shear stress has been shown to initiate a prolonged inflammatory 
response, which is particularly intense at vessel bifurcations [41]. 
The endothelium, the interface between blood flow and the vessel 
wall, plays a central role in the response to mechanical stress on 
the vasculature [42-44]. Endothelial cells process the mechanical 
stimuli of shear, stretch, and flow through mechanotransduction. 
Multiple mechanical sensors at the endothelial cell apical and 
basal surfaces allow these cells to alter their physical structure and 
initiate intracellular cascades that result in a sustained inflammatory 
response [45-47]. Nuclear factor-kappa B (NF-κB) plays a significant 
role in endothelial dysfunction and the resultant pro-inflammatory 
state implicated in multiple vascular pathologies, including, 
atherosclerosis and IAs [44,48]. The NF-κB pathway initiates a series 
of events leading to further activation of cellular adhesion molecules 
(CAMs) and the expression of inflammatory cytokines, including, 
interleukin 6 (IL-6), IL-8, intercellular adhesion molecule 1 (ICAM-
1), vascular cell adhesion molecule (VCAM-1), and E-selectin [49-
51]. These signaling molecules recruit monocytes, which transmigrate 
into the sub endothelial space, thereby increasing the permeability of 

the endothelium [40,52]. There is mounting evidence that miRNAs 
play critical roles in the processes underlying normal endothelial 
cell function and dysfunction. miRNA-155 has been demonstrated 
to modulate endothelial cell cytoskeletal organization in response to 
shear stress [53]. miRNAs have also been shown to target connexins 
and vascular endothelial-cadherin, key proteins involved in the 
maintenance of endothelial permeability [54,55]. 

Endothelial dysfunction has also been implicated in IA progression 
through the initiation of pathologic angiogenesis. Proliferation of 
microvasculature within IA walls is a proposed mechanism by which 
inflammatory cells access the tunica media and degrades the VSMC 
layer and ECM [4,56,57]. Li et al. demonstrated altered expression 
of multiple members of the let-7 family of miRNAs and miRNA-
18a in patients with IAs [58]. Endothelial cells strongly express these 
miRNAs and play a role in endothelial-driven angiogenesis [59]. 
miRNA-16 is also expressed by endothelial cells and is associated 
with angiogenesis [58,60]. 

Vascular smooth muscle cells and the extracellular matrix
VSMCs represent the primary cellular component of the 

tunica media and maintain vessel wall integrity. Under physiologic 
conditions, these cells display a contractile phenotype, but maintain 
the ability to undergo a phenotypic switch to a secretory phenotype 
when exposed to inflammatory stimuli. The VSMC secretory 
phenotype is characterized by a loss of the markers of contractility 
and the expression of pro-inflammatory cytokines and matrix 
metalloproteinases (MMPs) [61-66]. Endothelial dysfunction, 
hemodynamic stress, and direct injury have all been identified as 
stimuli capable of inducing this phenotypic change [67,68]. Secretory 
VSMCs also become migratory, resulting in a loss of mural cells 
and weakening of the vessel wall [25]. IA formation is defined by 
progressive thinning of the tunica media, cellular loss, and erratic 
VSMC migration and apoptosis [67,69,70]. Ruptured aneurysms 
more commonly demonstrate hypo cellular and hyalinized walls 
when compared to unruptured aneurysms [71]. 

Jiang et al. identified 18 miRNAs within 4 clusters that were 
significantly downregulated in the IA domes of 14 patients presenting 
with ruptured aneurysms [8]. These clusters were all found to 
be associated with varying cellular processes regulating VSMC 
phenotype and maintenance of the ECM [72-77]. miRNA-1, which 
is induced during VSMC differentiation and increases the expression 
of VSMC contractile proteins, was among the downregulated 
miRNAs [78]. miRNA-133, which prevents VSMC proliferation and 
inhibits the phenotypic change from contractile to synthetic VSMC 
phenotype, was also found at significantly diminished levels [79]. 

Li et al. found a significant upregulation of miRNA-7 in IA 
patients. miRNA-7 is a negative regulator of collagen expression in 
dermal fibroblasts [58,80]. The miR-29 family has been implicated in 
the genesis of IAs due to its role in the post-transcription suppression 
of the expression of ECM proteins [9,10,81-85]. These miRNAs 
were identified to suppress elastin and ECM protein genes in mouse 
models of aortic development [86]. Clinical studies have shown 
smokers to exhibit higher levels of miRNA-29b in their plasma 
than nonsmokers [87]. In a rat model of IA, Lee et al. observed 
over expression of miRNA-24 [35]. miRNA-24 suppresses TGF-β 
signaling, resulting in the VSCM phenotypic switch [88]. miRNA-
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34a is a tumor suppressor miRNA that influences both endothelial 
cells and VSMCs through its regulation of cell cycle arrest, apoptosis, 
and senescence in a p53-dependent or independent manner [89-91]. 
Multiple studies have also implicated miRNA-34a in age-related 
endothelial cell senescence and dysfunction [92-94]. Badi et al. 
demonstrated miRNA-34a upregulation in the arteries of aged mice 
[91]. Increasing levels of miRNA-34a were associated with decreased 
levels of SM22a, a protein that targets VSMCs and maintains these 
cells in the contractile phenotype.

Under physiologic conditions, maintenance of the ECM is 
largely dependent on a balance between the activity of matrix 
metalloproteinases (MMPs) and tissue inhibitors of matrix 
metalloproteinases (TIMPs) [64]. Perturbations of this balance 
result in increased breakdown of ECM proteins, including, collagen 
and elastin, resulting in weakening of the vessel wall and increased 
susceptibility to hemodynamic stress. As a result, ECM degradation 
has been identified as a key component of IA formation, progression, 
and rupture. 

Western blot and immunohistochemical analysis of IA walls has 
identified MMPs within the tissue [23,95]. Elevated MMP-9 levels 
have been documented in the serum of aneurysmal subarachnoid 
hemorrhage patients [96,97].

Cigarette smoke, a stimulus of IA growth and rupture, induces 
the release of MMP-2 and MMP-9 by macrophages [98]. Aoki et 
al. demonstrated increased levels of MMP-2 and MMP-9 in rat IA 
walls [63]. Smokers have been demonstrated to have elevated levels 
of MMPs and diminished levels of TIMPs and elastin within their 
carotid arteries [99]. TIMP-1 and TIMP-2 have been identified as 
potentially having a protective role for IA progression due to their 
ability to limit MMP-related degradation of the ECM [64].

The importance of MMPs and TIMPs in IA growth and 
rupture can be seen in the analysis of miRNA profiles. miRNA-29b 
demonstrates anti-angiogenesis properties and works through the 
suppression of MMP-2 expression [100]. Murine cardiac models 
identified over expression of miRNA-1, miRNA-26a, miRNA-
30d, miRNA-24, miRNA-29a, miRNA223 and miRNA-181c in 
MMP-9 knockout mice, which resulted in a reduction of cardiac 
myocyte dysfunction and improved cardiac function [101]. Lee et al. 
demonstrated over expression of many of these same miRNAs in a rat 
model of advanced IA formation [35]. The authors hypothesized that 
upregulation of these miRNAs may represent a protective response 
aimed at correcting the deleterious imbalance between MMPs and 
TIMPs in IA walls, thereby preventing further aneurysm progression 
to rupture [35]. 

Vascular inflammation and miRNA expression
An abundance of evidence links vascular pathology to chronic 

inflammation, while the mechanisms of pathologic inflammation 
have been investigated as causative agents in IA genesis. A pro-
inflammatory state has been shown to influence the processes 
associated with IAs, including, endothelial dysfunction, altered VSMC 
phenotypes, ECM degeneration, and transmuralinflammatory cell 
migration. Important inflammatory cytokines have also been linked 
to IAs, including, nuclear factor kappa-B (NF-κB), tumor necrosis 
factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemo 

attractant protein-1 (MCP-1) [28,67,102-108]. miRNA expression 
has been shown to play important roles in immunomodulation 
and the inflammatory response, thereby contributing to multiple 
disease states [109]. As a result, miRNA-mediated inflammation in 
vascular disease, particularly in atherosclerosis and abdominal aortic 
aneurysms (AAAs), has been well-characterized [110-112]. Advances 
in these areas may be applicable to the understanding of miRNA-
driven IA formation and progression.

Upregulation of miRNA-92a and miRNA-712, which participate 
in the inflammatory response and augment endothelial cell 
proliferation, have been shown to contribute to atherosclerosis [110]. 
Macrophage-derived expression of miRNA-342-5p works through 
miRNA-155 to induce the expression of pro-inflammatory genes 
during the progression of atherosclerosis [110,111]. Inhibition of 
miRNA-342-5p in a murine model resulted in a reduction of pro-
inflammatory cytokines, such as, nitric oxide synthase 2 (NOS2) 
and limited the progression of atherosclerosis [109]. Zhang et al. 
found that inflammation may induce endothelial cells to release 
pro-angiogenesis-related miRNAs in the setting of atherosclerosis 
[113]. Although the exact function of miRNA-181b has not been 
clearly defined, systemic administration to mice results in diminished 
vascular inflammation [114,115]. Importantly, human endothelial 
cells exposed to TNF-α demonstrated rapid downregulation of 
miRNA-181b. Li et al. reported that inflammation in the setting of 
diabetes and hyperlipidemia alters VSMC function through the 
selective down-regulation of miR-10a, miR-139b, miR-206, and miR-
222 expression, leading to the vascular pathology associated with 
these disease states [116]. Maegdefessel et al. identified miRNA-24 
as a mediator of vascular inflammation in murine models of AAA 
due to its regulation of macrophage and VSMC cytokine synthesis, 
stimulation of endothelial adhesion molecule expression, and VSMC 
migration [117]. 

miRNAs as Clinically Relevant Biological 
Markers of IA

At present, no definitive means by which to predict aneurysmal 
rupture exist. Decision-making is based on acquired clinical acumen, 
an evaluation of the IA morphology, and the clinical presentation of 
the patient. As a result, there is a need to identify biochemical markers 
predictive of the presence of IAs and impending rupture [118]. To 
date, these efforts have been met with limited success. Phillips et al. 
found a correlation between elevated serum lipoprotein (a) levels and 
the presence of IAs [118]. Sandalcioglu et al. found no association 
between vascular endothelial growth factor (VEGF) and the presence 
of unruptured IAs [119]. 

For a molecule to be of clinical utility, it should be reliably 
detectable, reproducibly measured, and be highly sensitive and 
specific for the pathologic entity of interest [7]. miRNAs represent 
a class of potentially clinically relevant biomarkers, in part, due to 
their presence within the circulation in a relatively stable state [7]. In 
the plasma and serum, miRNAs are found within microvesicles or 
in association with RNA‐binding proteins or lipoprotein complexes, 
which protect against enzymatic degradation [120]. There are multiple 
hypotheses regarding the origins of these circulating miRNAs, 
including, the cellular secretion of microvesicles and byproducts of 
dead cells [121,122].
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From a practical standpoint, miRNA can be reliably detected in 
a stable form within the plasma and withstands multiple freezing 
and thawing cycles [123,124]. There is significant evidence that 
shows miRNA expression within human plasma changes in the 
setting of various pathologic conditions, including, myocardial 
infarction, diabetes mellitus, and hypertension [120,125]. Li et al. 
demonstrated upregulation of inflammatory-related miRNAs in the 
plasma of intracerebral hemorrhage patients [125]. Furthermore, 
miRNA expression is cell-, tissue-, and phase-specific, allowing for 
localization of the miRNA source and the mapping of the temporal 
evolution of the pathologic condition [126-128]. 

Currently, there is limited data identifying miRNAs as clinically 
relevant biological markers for the identification of IAs and impending 
rupture. Using microarray analysis, Li et al. detected 223 miRNAs in 
the plasma of ruptured and unruptured IA patients and in healthy 
controls [58]. Of these miRNAs, significantly different expression 
of miRNAs was observed between the serum of IA patients and 
controls. Importantly, patients with unruptured IAs demonstrated 
significant changes in 119 miRNAs, while significant alterations 
in expression were identified in 23 miRNAs in ruptured patients. 
Further analysis found 20 of these miRNAs to be changed in both 
ruptured and unruptured patients [58]. Quantitative PCR (qPCR) 
demonstrated miRNA‐16 and miRNA‐25 levels to be significantly 
higher in IA patients. Logistic regression analysis found miRNA-16 
and miRNA-25 to be independent factors for IA occurrence. A trend 
of increased miRNA-let-7g was also observed in IA patients. miRNA-
188-5p was found in the plasma in a majority of IA patients, but not 
detectable in 13 of 15 healthy controls.

Aneurysm morphology, particularly the presence or absence of 
daughter blebs on the primary aneurysm dome, is used as an indicator 
of the risk of rupture [129,130]. The presence of these secondary 
blebs on the primary dome is indicative of progressive growth of 
the aneurysm, advanced weakening of the aneurysm wall, and a risk 
factor for impending rupture. Jin et al. studied miRNA expression in 
the plasma of normal controls, patients with unruptured aneurysms 
without blebs, patients with unruptured aneurysms with blebs, and 
aSAH patients [7]. The authors found upregulation of 68 miRNAs 
and no downregulation of the studied miRNAs in patients harboring 
an IA with a daughter bleb [7]. Patients with aneurysms lacking 
a daughter bleb possessed 4 upregulated and 9 downregulated 
miRNAs. aSAH patients demonstrated upregulation of has-miRNA-
3679-5p and hsa-miR-199a-5p and downregulation of 13 miRNAs. 
miRNA-21, miRNA-22, and miRNA-3665 were upregulated in 
patients with ruptured and unruptured IAs regardless of whether or 
not a daughter bleb was present. 

There are two particularly important points to be made from this 
data. First, miRNA expression was significantly altered compared to 
healthy controls in ruptured and unruptured IA patients. This finding 
lends support to the proposed utility of miRNAs as biological markers 
for the identification of IAs. Second, the differential expression of 
plasma miRNA levels in patients with aneurysms with and without 
daughter blebs may be evidence of changing miRNA profiles at 
different time points in aneurysm development and progression. 
Thus, the cellular and molecular processes underlying aneurysm 
initiation, growth, and rupture may occur in distinct phases. Further 

understanding of the miRNA profiles of these phases represents 
a means by which to better distinguish those aneurysms unlikely 
to rupture from those unstable aneurysms with advanced dome 
weakness [7]. 

Conclusion
Despite significant advances in the endovascular and 

microsurgical treatment of aneurysms, the associated morbidity 
and mortality of intervention remains significant. The inherent risk 
of treatment must be weighed against the risk of rupture and its 
associated high likelihood of a poor outcome. At present, the ability 
to identify those aneurysms most likely to rupture remains limited. 
As a result, an effort to identify reliable biological markers of IA 
formation and progression is underway.

miRNAs represent an attractive area of study due to their 
presence in the plasma and their cell- and tissue-specific expression. 
Their differential expression in multiple disease states has been 
previously established, however, data pertaining to IA pathogenesis is 
limited. Currently, there is sufficient data to suggest that alterations in 
plasma miRNA are indicative of the presence of an IA. Some evidence 
exists that links miRNA expression to different phases of aneurysm 
genesis. Furthermore, investigation of miRNA expression profiles has 
begun to link these miRNAs to the molecular and cellular processes 
associated with IA formation. Endothelial dysfunction, alterations in 
VSMC phenotype, and perturbations of the inflammatory response 
all contribute to IA pathogenesis and appear to be reflected in the 
presence of specific miRNAs.

Practically, miRNAs exhibit structural and biological properties 
that render them a potentially useful clinical tool. Further 
investigation is needed to better understand the relationships 
between miRNA expression profiles and IAs. Ultimately, knowledge 
of the downstream effects of miRNA expression is required to better 
elucidate the functions of these molecules.
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