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Abstract

Although glycemic control in diabetes can be managed through appropriate 
medications, diet, and exercise; the long term complications of the disease pose 
a severe health threat to both the type 1 and type 2 diabetic patient. These 
long term complications mostly stem from dysfunctions in the cardiovascular 
system that lead to organ failures in the renal, retinal, and integument systems; 
to name only a few affected in the disease. The long term complications arise in 
patients groups that are 1) both well controlled and 2) poorly controlled for their 
hyperglycemic episodes. This fact has generated the term “diabetic metabolic 
memory” that hypothesizes that initial hyperglycemia causes systemic changes 
that are “remembered” in the long term diabetic and result in the organ 
dysfunctions that are observed. As discussed in this review, mounting evidence 
indicates that one contributing factor in establishing metabolic memory is the 
occurrence of gDNA methylation changes that likely underlie organ dysfunction 
due to induced problems in normal gene regulation patterns. 
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blood vessel formation [2,5,44,45]. It should be noted that, blood 
vessel formation is a critical fundamental process found to be altered 
in a broad spectrum of organs/tissues affected in diabetes [2,5,44,45] 
and therefore; any pathology associated with blood vessel formation 
can lead to systemic problems that diminish the long term health and 
survival of the diabetic patient. Epigenetic mechanisms underlying 
this pathology thereby provide a partial explanation for the basis of 
metabolic memory and the consequences of its continuance in both 
the type-1 and type-2 diabetic patient.

Discussion
Analysis of the acute and metabolic memory states of 
type 1 diabetes as studied in a zebrafish animal model of 
the disease

Previous articles and reviews by our laboratory have described in 
detail the development and use of a type-1 diabetes zebrafish model 
for study of the acute and metabolic memory states of this disease 
[24,46,47] The reader is referred to these articles for an in-depth 
description of this zebrafish DM/MM model. In brief, zebrafish was 
chosen to develop a DM/MM model because of its high regenerative 
capacity. Ablation (either surgically or chemically) of almost any 
tissue/organ in the zebrafish results in subsequent regeneration of 
this tissue/organ. Taking advantage of this fact, studies were begun 
to determine the feasibility of chemically ablating the beta cells 
of the zebrafish pancreas using the beta cell degenerative agent, 
streptozotocin (STZ); thus producing a type-1 DM state. Studies 
found that STZ induced an increased fasting glucose levels from 60 
mg/dL to 315 mg/dL with one week of treatment. Hyperglycemia 
was accompanied by tissue/organ dysfunction of the cardiovascular 

Introduction
Diabetes mellitus (DM, both type-1 and type-2) is a disease of 

metabolic dysfunction and currently affects 23.6M Americans with 
a projection of 400M worldwide by 2030 [1]. Although glycemic 
control in diabetes can be managed through appropriate medications, 
diet, and exercise; the long term complications of the disease pose a 
severe health threat to both the type 1 and type 2 diabetic patients 
[1-5]. These long term complications involve a broad array of tissue/
organ systems such as the cardiovascular system, renal system, retinal 
system, and integument as related to problems with wound heading 
[1-5]. Clinical trials have established that once hyperglycemia is 
initiated, complications can be observed to persist and continue to 
progress even when glycemic control is achieved through medical 
intervention; a process termed, “Metabolic Memory” (MM) [5-
19]. The mechanism(s) of metabolic memory have been examined 
through both animal model approaches and in vitro type studies 
[20-26] and these. These studies indicate that hyperglycemia results 
in permanent aberrant gene expression in tissues affected by the 
disease. The ability to sustain these complications in the absence of 
hyperglycemia indicates a role for the epigenome to perpetuate tissue 
dysfunction. While epigenetic research has been conducted regarding 
histone modifications [27-36] and microRNA mechanisms [37-43], 
less is known about the role of hyperglycemia-induced persistent 
gDNA methylation changes; although data from animal models and 
humans indicate that aberrant gDNA methylation does occur in 
diabetes. Moreover, the hyperglycemic environment induces changes 
in the cardiovascular system as seen in endothelial cells that undergo 
structural, metabolic, and functional alterations such as aberrant 
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system, renal system, retinal system, limb regenerative function, and 
integument (as related to wound healing) throughout the time of 
STZ treatment. Subsequent removal of STZ treatment resulted in a 
return to normal glucose levels within two weeks; however, tissue/
organ dysfunction was retained. Therefore, the model allowed one to 
induce a DM state and then return the fish to a normal glycemic state 
after a defined period of hyperglycemia. The fact that tissue/organ 
dysfunction was retained after normal glycemic levels returned, 
indicates that the fish had entered a true “metabolic memory” state 
upon termination of STZ treatment. 

Methylated gDNA Patterns in the Acute and Metabolic 
Memory States in the Zebrafish Type 1-DM model

The DM/MM type-1 zebrafish model allows one to study the 
mechanisms of metabolic memory without the continuance of 
hyperglycemic episodes that are seen in the type-1 DM patient or 
mammalian animal models of the disease. These hyperglycemic 
episodes result in continue metabolic dysfunction as related to 
the generation of Reactive Oxygen Species (ROSs) and Advance 
Glycation End-products (AGEs). Such reagents create “metabolic 
noise” that complicates discernment of mechanisms that are unique 
to metabolic memory and unrelated to ROS and AGE affects.

When epigenetic changes related to gDNA methylation patterns 
were studied by MeDIP sequencing and micro-array analysis in 
zebrafish in the metabolic memory state, specific molecular patterns 
were observed. Specifically, as compared to controls, DM fish 
underwent alterations in the amount of gDNA methylation (both 
Hypomethylation and Hypermethylation) in specific loci for a given 
tissue/organ [48]. These patterns were retained in fish that entered the 
metabolic memory state; although the degree of methylation in any 
given gene loci could be observed to change (either higher or lower 
amounts of methylation). Gene expression changes accompanied the 
gDNA methylation patterns. These gene expression patterns were 
observed in both DM and MM as compared to controls. 

Analysis of the specific loci affected found gDNA methylation 

changes in regulatory gene groups such as members of the DNA 
replication/repair process group. This included such genes as apex1, 
mcm2, mcm4, orc3, lig1, and dnmt1 [48]. Of these genes, dnmt1 
is of particular interest due to its critical function in the gDNA 
methylation process. Bioinformatic analysis of the data found that 
gDNA methylation changes occurred as far as 6-13 kb upstream of 
the transcription start site of these genes, indicating potential effects 
regarding enhancer elements [48].

As a follow-up to these studies, global gDNA methylation 
patterns were then studied [49]. These studies focused on gDNA 
regions 10Kb upstream, 1Kb upstream, and 300bp downstream of 
the transcription start site for all genes of the zebrafish genome [49] 
in the control, DM, and MM zebrafish groups. Analysis of the general 
pattern of gDNA methylation in the three regions found no distinct 
pattern of spatial distribution. Methylation was found to occur 
anywhere along the Minus or Plus DNA strand; suggesting a random 
distribution. However if one analyzes the counts of methylated CpG 
dinucleotides, a different trend was observed. For the three regions 
analyzed, the number of methylated CpG dinucleotides was distinctly 
different between the Control, DM and MM groups. The number 
of methylated CpG dinucleotides in the DM group appears to be 
overall increased as compared to the controls, while the number of 
methylated CpG dinucleotides in the MM group appears to be 
overall decreased. Therefore, while hyperglycemia triggers gDNA 
methylation changes, these changes can involve both Methylation 
(DM) and De-Methylation (MM). If one focuses on specific gene 
groups, it is found that specific patterns can be observed. For example, 
methylation changes for the genes involved in blood vessel formation, 
predominantly occurs 10Kb upstream of the transcription start site in 
these genes. Approximately a total of sixty genes at this time can be 
identified involved in the regulation of blood vessel formation based 
on human and vertebrate data bases [49]. Of these sixty genes, the 
greatest number of methylated CpG dinucleotides were observed in 
the Control group and the majority of these were found on the “+” 
strand of DNA (20 genes) with only 6 genes having methylated CpG 
dinucleotides on the “-” Strand. Additionally, five genes of the “+” 
strand were found to have no methylated CpG dinucleotides in DM, 
indicating that complete de-methylation had occurred with genes of 
this group. All six genes on the “-” strand retained methylated CpG 
dinucleotides, although this analysis does not tell one that the number 
of methylated CpG dinucleotides remains the same in these genes in 
DM. By comparison, all 20 genes in the Control group with methylated 
CpG dinucleotides were lost in the MM group indicating a complete 
de-methylation had occurred with these genes. One gene of the DM 
group (mmp2) showed a loss of all methylated CpG dinucleotides 
in the MM group indicating that in the transition from the DM to 
the MM stage, mmp2 is completely de-methylated. Moreover, pola2, 
a gene that was not seen in the Control or DM groups, becomes 
methylated in the MM group. In the 1Kb and 300bp regions, only two 
genes were methylated. For these regions, tet3 becomes methylated 
in the DM state but is not methylated in Control or MM groups. To 
add to this complexity, one finds that the other gene with methylated 
CpG dinucleotides in the 1Kb and 300bp regions is mbd2. mbd2 is a 
gene located on both the Plus and Minus DNA strands with its own 
transcription start site on both of these strands. In total, these studies 
indicated the high degree of complexity involved during gDNA 
methylation that is induced by hyperglycemia.

Figure 1: Scheme of the relationship of Hyperglycemia to the long term organ/
tissue dysfunctions observed in Diabetes mellitus.  ROSs: Reactive Oxygen 
Species; AGEs: Advanced Glycation End-products; Epigenetic changes as 
related to gDNA methylation as shown in the graph; Pre-DM: Pre-Diabetes 
Mellitus; DM: Diabetes Mellitus; MM: Metabolic Memory.
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From a functional standpoint, one may ask how this relates to 
the tissue/organ dysfunctions observed in the MM state following 
hyperglycemia? The answer rests in the fact that gDNA methylation 
changes can occur in promoter and enhancer regions as well as 
a gene’s UTRs and open reading frame. Because it is known that 
methylation in promoter and enhancer regions affects the ability 
of transcription factors to bind to their respective sites, one can 
hypothesize that the methylation changes induced by hyperglycemia 
can alter the regulation of gene expression patterns for a given tissue/
organ; thereby leading to the induction of dysfunction and the long 
term pathology that is observed. Additional studies are required to 
further elucidate these DM/MM mechanisms. 

The application of such data to the treatment of DM and MM 
has limitations, but also has distinct avenues of application for the 
human disease. The limitation is the broad number of genes, such as 
genes that regulate the formation of blood vessels that are affected by 
gDNA methylation. On the other hand, new technical approaches are 
available that offer hope in this regard. For example, recent studies 
using non-viable embryos have shown that mutated genes could be 
targeted using CRISPR technology for correection of the heritable 
blood disorder, beta thalassemia. There were limitations however, in 
that the few embryos that took up the change made by CRISPR were 
found to be a patchwork of edited and unchanged cells. In addition, 
the embryos affected bore unintended edits outside the targeted gene. 
Later, another group reported repairing disease-causing mutations in 
viable embryos, but some still contained a patchy mix of edited cells; a 
phenomenon called mosaicism. It should be noted that none of these 
groups went on to implant the manipulated embryos in women. Most 
recently, the laboratory of Mitalipov produced tens of successfully 
edited embryos, and avoided the issue of mosaicism by injecting eggs 
with CRISPR right as they were fertilized with donor sperm [50]. 
These advances suggest that embryonic gene editing may be possible 
and applied to those with at least Type-1diabetes. 

Conclusion
While the mechanisms underlying metabolic memory are 

multifaceted, the present review indicates that epigenetics likely has 
an important role in its pathology. There are, of course, many aspects 
of epigenetics not discussed in this review such as the role of histone 
modifications; but the maintenance of gDNA methylation changes 
after initial episodes of hyperglycemia occur, argues for changes 
in gDNA methylation patterns being an important contributing 
factor in the prolonged pathology associated with the long term 
complications observed in MM. A schematic flow-chart of the major 
points discussed in this review regarding the inter-relationship of 
diabetic hyperglycemia, organ/tissue dysfunctions, and the role of 
epigenetics in these processes is shown in Figure 1.
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