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[6]. In birds, hyperglycemia results from the glucagon activation of 
liver glycogenolysis (reviewed by [1]). Given that birds store little 
glycogen, amino acids produced by proteolysis in migratory species 
are key intermediates for replenishing glucose [3]. Therefore, the 
phenomenon of ‘glucagon-driven’ glucose hemostasis in birds is 
thought to be responsible for their stable and well-controlled blood 
glucose levels [5]. 

Lower levels of glycated hemoglobin
Although high glucose levels are known to increase glycosylated 

hemoglobin levels [5,7] birds have low levels of glycosylated 
hemoglobin relative to mammals [11]. Although the mechanism 
underlying the anti-glycation defenses of birds remains largely 
unknown, higher concentrations of reactive carbonyl-scavengers 
and/or transglycating agents, e.g. taurine (~6 fold) and other free 
amino acids (~4 fold), and lower levels of methylglyoxal (MG; 
undetectable), than mammals are thought to provide effective 
defenses against glycation and advanced glycation end-product 
(AGEs) formation (via Maillard reaction) [12,13]. Szwergold 
and Miller (2014) speculated that the Maillard reaction–related 
characteristics of birds may contribute to their ability to successfully 
cope with chronic hyperglycemia, and highlighted that birds could 
be a potential model for preventing diabetic complications through 
minimizing the production, and maximizing the elimination, of MG 
by detoxification or scavenging [12].

Loss of glucose and lipid metabolism related-genes
The loss of both protein-coding and non-coding genes in birds is 

a remarkable feature that is thought to be related to their evolution 
of metabolically-costly, powered flight [14,15]. A previous study 
has shown that birds have lost four genes encoding adipokines; one 
enhancing insulin sensitivity and three that inhibit it [16]. Although 
birds lack the receptor gene for AGEs that is present in mammals 
[17], they can nonetheless reduce the glycation of serum albumin in 
the presence of naturally high blood glucose concentrations relative 
to mammals [18-20]. Furthermore, birds lack the insulin-responsive 
glucose transport protein 4 (GLUT4), which is present in mammalian 
adipose tissue, cardiac and skeletal muscle (down regulated in 
adipose-tissue GLUT4 under fasting conditions and up regulated 
following feeding [1,21]). Therefore, the lack of several genes in birds 
that are reported to control the glucose and lipids metabolism of 
mammals can explain, to some extent, why high concentrations of 
blood glucose do not cause the hyperglycemia-related complications 
observed in mammals.

Compared with mammals, the mechanisms that allow birds 
to maintain such high blood glucose levels and an enhanced lipid 
metabolism have yet to be clarified. However, in recent years, 
ornithologists have taken the first steps towards obtaining basic 
information on the ecophysiology, endocrinology, and genome 
evolution of the avian energetic metabolism [12,18,22-29]. Such 
information is essential, not only for uncovering the regulatory 
mechanism of glucose and lipid metabolism in birds (especially free-
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In mammals, chronically elevated concentrations of blood 

glucose (chronic hyperglycemia) and decreased insulin levels can 
ultimately lead to Type 2 Diabetes Mellitus (T2DM) and its associated 
complications. In contrast, birds have significantly higher blood 
glucose concentrations than mammals of similar body mass (1.5~2 
times) and yet are able to resist the regulation of glucose by insulin 
without any adverse effects [1]. Most avian species for which the 
relevant data are available appear to possess specialized mechanisms 
to enhance fatty acid transport and oxidation during flight [2,3]. These 
are similar to the way energy is utilized by diabetic humans who are 
unable to efficiently increase glucose utilization and consequently rely 
more on fatty acid oxidation when carbohydrates are plentiful [4]. 
To the best of our knowledge, the underlying mechanism regulating 
glucose and lipid hemostasis in birds has yet to be clarified. Several 
aspects of glucose regulation in birds are, however, worth highlighting, 
and may contribute to better understanding the pathogenesis and 
treatment of T2DM, and its associated complications, in humans.

Higher, but better-controlled, blood glucose 
concentrations

Birds have significantly higher blood glucose concentrations than 
other vertebrates of similar body mass [1,5]. Furthermore, they can 
maintain higher glucose concentrations within tight homeostatic 
limits regardless of food restriction, fasting, long-distance migration, 
or changes in photoperiod [1,6,7]. This ability to maintain higher 
glucose levels is thought to be correlated with the markedly higher 
standard metabolic rate (SMR) and body temperature of birds 
compared to other vertebrates, which are necessary to meet the 
energetic requirements of powered flight [8,9].

Birds have significantly lower plasma insulin levels (~10 times), 
but higher pancreas glucagon levels (8~10 times), than mammals 
[10]. Furthermore, the glucose metabolism of birds appears to be 
relatively insensitive to insulin (e.g. lipolysis, hepatic glycogenolysis, 
glycolysis or gluconeogenesis) but sensitive to glucagon (e.g. lipolysis, 
glycogenolysis or gluconeogenesis), compared to that of mammals 
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living birds), but also for improving our understanding of the etiology 
of humanT2DM. Therefore, the unique attributes of the energetic 
metabolism of birds could hold the key to developing a “pathology-
free model of T2DM” in the field of both zoology and endocrinology 
[12,22].
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