(Austin Publishing Group

Short Communication

Nutritional Tables to Improve Mood Disorders

Bravo $R^{1\ast},$ Ugartemendia $L^1,$ Cubero $J^2,$ Rodriguez AB^1 and Barriga C^1

¹Department of Physiology, University of Extremadura, Spain

²Health Education Laboratory, Experimental Science Education Area, University of Extremadura, Spain

*Corresponding author: Bravo R,

Neuroimmunephysiology & Chrononutrition Group, Department of Physiology, Faculty of Science, University of Extremadura, Badajoz, Spain

Received: August 06, 2015; Accepted: August 17, 2015; Published: August 24, 2015

Short Communication

Chrononutrition is a field of Chronobiology that establishes the principle of consuming foodstuffs at times of the day when they are more useful for health, improving, therefore, biological rhythms and physical performance [1]. Every trial carried out by our research group in this field has shown that some nutrients may influence some circadian functions, but they may also be positive for health in ageing and some neurological disorders [2].

But not only ageing or neurological diseases make us suffer from chronodisruption. In fact, mainly, there are two causes of chronodisruption, they are chronic changes in timing of light and behavioral activity (physical activity, rotating shift work, meal times, etc.) [3]. When the sleep/wake circadian rhythm shows chronodisruption symptoms and becomes uncoupled with the endogenous timing system, normal day/night variations in many hormones and neurotransmitters are altered and may have adverse health consequences [4]. Our research group, in this communication, aims to provide some nutritional tables to be taken into account for mood disorders due to the strong and growing community interest in the effects of nutrition and dietary factors on mental health.

Triptophan-enriched diets may achieve beneficial effects on serotonin or melatonin levels with their consequent positive influence on health [5]. In this way, our research group has searched scientific databases to elaborate tables of foods whose composition shows high levels of tryptophan, serotonin, or melatonin. To carry out this objective we looked for tryptophan content food in USDA database, related to indoleamines riched food we used the descriptors "serotonin" and "melatonin" in PubMed, Science Direct and Google Scholar scientific databases.

We recommend tables showed in this letter for the design of diets to improve sleep disorders, those neurological diseases related with impairments in indolamine levels, or psychological disorders like anxiety or depression.

Moreover, to design a triptophan-enriched diet it is important to take into account that meals must have at least some glycaemic effect in the blood. Tryptophan ingested with glucides is better transported into the blood. This is provoked by insulin secretion which induces

 Table 1: Food with high levels of tryptophan amino acid. Sources: United State

 Department of Agriculture (USDA), USDA Nutrient Database for standard

 reference and [7].

Food	Tryptophan content	
Seeds:		
Winged beans	0.762 g/100gr	
Soybeans	0.591 g/100 g	
Roasted pumpkin	0.569 g/100 g	
Sesame	0.371 g/100g	
Walnuts	0.32 g/100g	
Parsley	0.475 g/100g	
Cheese:		
Mozzarella	0.571 g/100g	
Chedar	0.558 g/100g	
Parmesan	0.482 g/100g	
Edam	0.352 g/100g	
Gouda	0.352 g/100g	
Cod	0.704 g/100g	
Tuna	0.34 g/100g	
Elk	0.545 g/100g	
Pork:		
Bacon	0.464 g/100g	
Loin	0.386 g/100g	
Ham	0.374 g/100g	
Sirloin	0.37 g/100g	
Chops	0.369 g/100g	
Liver	0.366 g/100g	
Rabbit:		
Wild	0.436 g/100g	
Domesticated	0.401 g/100g	
Goat	0.403 g/100g	
Beef:		
Round	0.402 g/100g	
Liver	0.368 g/100g	
Porterhouse steak	0.355 g/100g	
Chicken	0.386 g/100g	
Wild boar	0.38 g/100g	
Veal:		
Liver	0.361 g/100g	
Quail breast	0.354 g/100g	
Horse	0.349 g/100g	
Spiny lobster	0.368 g/100g	
Cuttlefish	0.364 g/100g	
Octopus	0.33 g/100g	
Cherry:		
Navalinda	82.65 ± 4.29 ppm	
Van	68.58 ± 3.28 ppm	
Pico limón	62.69 ± 5.61 ppm	
Bourlat	61.36 ± 5.81 ppm	
Ambrunés	57.24 ± 7.11 ppm	
Pico Negro	37.76 ± 2.43 ppm	
Pico colorado	36.53 ± 9.84 ppm	

the entry of Large Neutral Amino Acids (LNAA: leucine, isoleucine, tyrosine, phenylalaline and valine) into muscle cells [6]. This fact is particularly relevant due to tryptophan being transported bound to albumin, such as LNAA; in this way a glycaemic meal with high levels of tryptophan should be better at increasing serotonin and melatonin levels in blood (Tables 1-3).

For several decades pharmacology has been very important to treat mood disorders, but in the last years non-pharmacological

Citation: Bravo R, Ugartemendia L, Cubero J, Rodriguez AB and Barriga C. Nutritional Tables to Improve Mood Disorders. Ann Depress Anxiety. 2015; 2(5): 1059.

Bravo R

Food	Serotonin content
Tomato	221.9 µg/g
Cherry tomato	156.1 µg/g
Chinese cabbage	110.9 ± 22.5 µg/g
Spinach	34.4 ± 2.4 μg/g
Plantain	30 ± 7.5 µg/g
Cherry: Navalinda Pico colorado Burlat Pico Negro Hot pepper	30.7 ng/100g 36.6 ng/100g 12.6 ng/100g 2.8 ng/100g 17.9 µg/g
Chicory	8.5 ± 3.2 µg/g
Green onion	8 ± 0.8 µg/g
Kiwi fruit	5.9 ± 0.9 μg/g
Plums	4.7 ± 0.8 μg/g
Strawberry	3.77 ± 0.66 μg/g
Lettuce	3.3 ± 0.6 μg/g
Paprika	1.8 µg/g
Egg plant	1.5 – 12 μg/g
Wild maracuja	1.4 - 3.5 μg/g
Papaya	1.1 - 2.1 μg/g
Avocados: Haas Fuerte Booth	1.6 ± 0.40 μg/g 1.5 ± 0.21 μg/g 0.2 ± 0.004 μg/g
Pineapple	1.5 μg/g
Grapefruit	0.9 µg/g
Honeydew melón	0.6 µg/g
Olives	0.2 µg/g

Table 3: Food with indo	e melatonin high levels.	. Sources: references [10,11].

Food	Melatonin content
White mustard	189 ng/g
Black mustard	129 ng/g
Almond	39 ng/g
Fennel	28 ng/g
Cherry	15-18 ng/g
Green cardamom	15 ng/g
Anise	7 ng/g
Oat	1.8 ng/g
Indian corn	1.3 ng/g
Rice	1 ng/g
Radish	0.6 ng/g
Tomato	0.5 ng/g
Banana	0.5 ng/g
Ginger	0.5 ng/g
Cabbage	107.4 ± 7.3 pg/g
Carrot	55.3 ± 11.9 pg/g
Pineapple	36.2 ± 8.4 pg/g
Onion	31.5 ± 4.8 pg/g
Cucumber	24.6 ± 3.5 pg/g
Kiwi fruit	24.4 ± 1.7 pg/g
Strawberry	12.4 ± 3.1 pg/g
Asparagus	9.5 ± 3.2 pg/g

approaches have been considered to improve these impairments and successful results have been reported in literature [12]. This focused review offers new nutritional tables with potential effects on mood and behavior as previous research have shown both in animals and humans with respect to indolamines and its precursor essential amino acid tryptophan.

References

- Bravo R, Cubero J, Franco L, Mesa M, Galán C, Rodriguez AB, et al. Body weight gain in rats by a high-fat diet produces chronodisruption in activity/ inactivity circadian rhythm. Chronobiol Int. 2014; 31: 363-370.
- Bravo R, Matito S, Cubero J, Paredes SD, Franco L, Rivero M, et al. Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans. Age. 2013; 35: 1277-1285.
- Erren TC, Reiter RJ. Defining chronodisruption. J Pineal Res. 2009; 46: 245-247.
- Turner PL, Van Someren EJ, Mainster MA. The role of environmental light in sleep and health: effects of ocular aging and cataract surgery. Sleep Med Rev. 2010; 14: 269-280.
- Delgado J, Terron Mdel P, Garrido M, Barriga C, Paredes SD, Espino J, et al. Systemic inflammatory load in young and old ringdoves is modulated by consumption of a Jerte Valley cherry-based product. J Med Food. 2012; 15: 707-712.
- Silber BY, Schmitt JA. Effects of tryptophan loading on human cognition, mood, and sleep. Neurosci Biobehav Rev. 2010; 34: 387-407.
- Cubero J, Toribio F, Garrido M, Hernandez M, Maynar J, Barriga C, et al. Assays of the amino acid tryptophan in cherries by HPLC-fluorescence. Food Anal Methods. 2010; 3: 36-39.
- Ramakrishna A, Giridhar P, Ravishankar GA. Phytoserotonin: a review. Plant Signal Behav. 2011; 6: 800-809.
- Feldman JM, Lee EM. Serotonin content of foods: effect on urinary excretion of 5-hydroxyindoleacetic acid. Am J Clin Nutr. 1985; 42: 639-643.
- Hardeland R, Pandi-Perumal SR. Melatonin, a potent agent in antioxidative defense: actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutr Metab (Lond). 2005; 2: 22.
- 11. Paredes SD, Korkmaz A, Manchester LC, Tan DX, Reiter RJ. Phytomelatonin: a review. J Exp Bot. 2009; 60: 57-69.
- Ugartemendia L, Bravo R, Tormo R, Cubero J, Rodríguez AB, Barriga C. Especies vegetales presentes en la comunidad del País Vasco con principios bioactivos beneficiosos sobre el ritmo del sueño. Medicina Naturista. 2015; 9: 47-58.

Ann Depress Anxiety - Volume 2 Issue 5 - 2015
ISSN: 2381-8883 www.austinpublishinggroup.co
Bravo et al. © All rights are reserved

Citation: Bravo R, Ugartemendia L, Cubero J, Rodriguez AB and Barriga C. Nutritional Tables to Improve Mood Disorders. Ann Depress Anxiety. 2015; 2(5): 1059.