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the rat BLA, anxiety-like behavior increases [10,11], while when these 
receptors are blocked by microinjection of an antagonist, anxiety-like 
behavior is decreased [11]. Similarly, when the activity of the acid-
sensing ion channels 1a‒which preferentially facilitate GABAergic 
inhibition in the rat BLA [12]‒is increased by microinjection of an 
activator into the rat BLA, anxiety-like behavior decreases, and when 
the activity of these channels is suppressed by microinjection of an 
antagonist in the rat BLA, anxiety-like behavior increases [12].

Are there real-life situations where excitability of the amygdala can 
be increased, in long-term, by way other than stressful experiences, 
leading to the development of anxiety? Traumatic Brain Injury (TBI), 
including mild TBI, is often followed by long-term behavioral deficits, 
anxiety being most prevalent among them [13]. Excitability of the 
amygdala is altered after mild TBI [14,15]. It is difficult, however, 
in TBI patients to distinguish between psychogenic causes that may 
have increased amygdalar excitability, or organic causes resulting 
from the injury [13]. The experience of a life-threatening event 
that caused TBI, the hospitalization, the fear of possible permanent 
impairment, financial difficulties etc. are stressors that could alter the 
function of the amygdala leading to hyperexcitability and, thereby, 
development of anxiety. However, most of these stressors are not 
present in experimental animals, where mild TBI is induced under 
anesthesia; yet, anxiety-like behavior increases, and it is associated 
with loss of interneurons and reduced GABAergic activity in the BLA 
[15]. These findings suggest that the etiology of anxiety after TBI may 
also be traced to biological/organic causes that alter the physiology of 
the amygdala, in addition to or instead of psychogenic causes.

Anxiety is also often present in epilepsy patients and, particularly, 
in temporal lobe epilepsy [16-18], which involves hyperexcitability of 
the hippocampus and the amygdala [19]. In experimental animals, 
increased anxiety-like behavior is one of the behavioral consequences 
of prolonged status epilepticus induced by nerve agents [20,21]. 
These are additional examples of non-psychogenic origins of anxiety 
(or non-stress-induced “anxiety-like behavior” in animals), although 
some contribution of stress-related factors cannot be excluded. In 
the second example, it is conceivable that the stress component of 
experiencing prolonged convulsive seizures and the associated life-
threat might be responsible for altering amygdalar excitability and 
inducing anxiety. However, the presence of anxiety is accompanied 
by loss of both GABAergic interneurons and principal neurons in the 
BLA [21,22], resulting in a significant reduction in the ratio of the 
number of GABAergic interneurons over the number of principal 
neurons [21] and a decrease in spontaneous GABAergic activity, 
concomitant with an increase in glutamatergic activity [23]. It is far 
more likely that the neuronal death was caused by the intense seizures 
than by the stress associated with the experience of seizures. If the 
seizures are controlled, even after 1 hour of ongoing status epilepticus, 
interneuronal death is prevented and anxiety-like behavior does not 
develop [20,22].

Editorial
In the health sciences, we often speak of associations between 

physiological or pathophysiological parameters and/or symptoms. In 
many cases, the direction of causality in a given association is clear. 
For example, a headache that is associated with hypoglycemia is the 
result (the effect), while the hypoglycemia is the cause. In research 
related to the neurobiological mechanisms that underlie anxiety 
disorders, it is often stated that anxiety is associated with increased 
neuronal excitability in the amygdala. How clear is it in this case what 
comes first? Do intense and/or repeated anxiety states under stressful 
situations alter the physiology of the amygdala making it hyper 
excitable, or is it possible that if neuronal excitability in the amygdala 
is persistently increased‒due to purely biological/organic causes that 
are independent of stress and anxiety‒then anxiety will ensue?

The hyperexcitability of the amygdala in Post-Traumatic Stress 
Disorder (PTSD) [1-5] is probably one of the effects of the traumatic 
experience, and, therefore, it is a good example of stress and anxiety 
producing derangements in the physiology of the amygdala. Thus, 
exposure to intense stress induces alterations in the amygdala that 
make it persistently prone to high levels of activity (hyperexcitable) 
and exaggerated responses to fearful stimuli [1-3]. Studies in PTSD 
animal models have revealed possible cellular/synaptic mechanisms 
by which stress and anxiety can alter the excitability of neuronal 
networks in the amygdala; such mechanisms include impairment in 
the α1A adrenoceptor-mediated facilitation of GABAergic inhibition 
in the Basolateral Amygdala (BLA) [6,7], downregulation of the 
5-HT2A serotonin receptors which also facilitate inhibitory activity 
in the BLA [8], and dysfunction of calcium-activated potassium 
channels [9]. After PTSD has developed, the hyperexcitability of the 
amygdala plays a central role in the expression of anxiety, but it is the 
initial traumatic experience and the stress and anxiety it produced 
that made the amygdala hyperexcitable.

Experimental evidence for the reverse directionality in the 
anxiety-amygdalar hyperexcitability association is also available. 
Thus, anxiety can be induced without previous stressful experiences, 
merely by increasing, through pharmacological means, excitatory 
activity in the BLA. For example, when kainate receptors containing 
the GluK1 subunit are activated by microinjection of an agonist into 
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It is noteworthy in this regard that a substantial number of the 
victims of the sarin attack in Tokyo, in 1995, exhibit PTSD symptoms, 
years later [24-27]. The development of PTSD in this case could be 
attributed to the one-time stressful experience of the terrorist attack 
and/or the stress associated with the health consequences. However, 
given the findings from the animal experiments, showing seizure-
induced disproportional loss of GABAergic interneurons over loss 
of principal neurons in the BLA [21], along with the findings of 
amygdalar atrophy in the sarin victims who developed PTSD [27], it 
is necessary to consider the possibility that amygdala damage induced 
by seizures rather than by stress could be the primary precipitant of 
PTSD.

In conclusion, the association between anxiety and amygdalar 
hyperexcitability appears to be bidirectional. Stress and anxiety can 
be the cause of increased neuronal excitability in the amygdala, as 
in PTSD (once the disorder is established, the causality reverses 
direction, as the hyperexcitable amygdala sustains the anxiety 
disorder). However, the amygdala may also become hyperexcitable 
due to biological/organic causes that are independent of stress and 
anxiety. In those cases, anxiety is the result of the derangement in 
amygdala function. Recognizing the bidirectionality of the association 
between anxiety and amygdalar hyperexitability, and shedding light 
into the operating mechanisms, will reinforce the view that the 
underlying causes of affective disorders can sometimes be primarily 
or purely organic, which can help determine the correct approach to 
therapy. 
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