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Abstract

Osseointegration plays a crucial role to control implant stability 
and subsequent occlusal function. Histological investigation has been 
standardized and widely employed in animal studies to evaluate the stability 
and osseointegration of placed implants. In this paper, we have retrieved 
dental implants from a cadaver’s mandible and the collected samples were 
subjected to optical and SEM observation and histological analysis. Excellent 
osseointegration was histologically noticed, and resembled the reported data 
from animal models. Accordingly, the applicability and validity of results obtained 
from animal models is confirmed.
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Introduction
Nowadays, dental implants represent a reliable treatment option 

for oral rehabilitation of partially or fully edentulous patients. Their 
longevity is strongly related to their stability, which is also related to 
osseointegration. There are a variety of methods to evaluate stability 
and the extent of osseointegration using in vivo animal tests as well 
as in vitro tests.

Osseointegration 
Osseointegration is a time-dependent healing process and is 

defined as a direct structural and functional connection between 
vital bone and the surface of a load-carrying implant. To achieve a 
promising osseointegration, there are at least three compatibilities that 
the placed implant should exhibit, including biological compatibility, 
morphological compatibility and biomechanical compatibility [1-6]. 
Various surface modifications have been proposed and applied [2-5] 
for manipulating implant surfaces to exhibit biological, morphological 
and/or biomechanical compatibility.

Osseointegration is critical for implant stability and is considered 
as a prerequisite for implant loading and long-term clinical success 
of dental implants. The implant/tissue interface is an extremely 
dynamic region of interaction [7-9]. Histologic appearance of the 
osseointegration resembles a functional ankylosis with no intervention 
of fibrous or connective tissue between bone and implant surface 
[10]. Numerous pre-clinical studies have shown the superiority of 
particular surface modifications with respect to histomorphometric 
properties and biomechanical features. To guarantee long-term 
success in clinically challenging conditions, the development of 
multifunctional surface modifications and coatings is necessary 
[5,11]. Osseointegration is one important index to evaluate the success 
rates of dental implantation. Insufficiency of the osseointegration and 
increased micro-motion can increase the failure risk of the implant 
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in the early stages of healing. Hence, osseointegration and implant 
stability are strongly related to each other [12].

Stability 
Implant stability is a prerequisite characteristic of osseointegration. 

Continuous monitoring in a quantitative and objective manner 
is important to determine the status of implant stability [13,14]. 
Osseointegration is also a measure of implant stability that can occur 
in two stages: primary and secondary [15]. Primary stability mostly 
occurs from mechanical engagement with cortical bone. A key factor 
for implant primary stability is the Bone-to-Implant Contact (BIC) 
[16]. Therefore, the primary stability is affected by bone quality and 
quantity, surgical technique and implant geometry (length, diameter, 
surface characteristics). Secondary stability offers biological stability 
through bone regeneration and remodeling [17-20]. Secondary 
stability is affected by primary stability [19,21].

During the transition period from primary to secondary stability, 
the implant faces the risk of micromotion; possibly leading to implant 
failure. It is estimated that this period in humans occurs roughly 2-3 
weeks after implant placement when osteoclastic activity decreases 
the initial mechanical stability of the implant, but not enough new 
bone has been produced to provide an equivalent or greater amount 
of compensatory biological stability [11,16,22]. This is related to the 
biologic reaction of the bone to surgical trauma during the initial 
bone remodeling phase; bone and necrotic materials resorbed by 
osteoclastic activity are reflected by a reduction in the Implant 
Stability Quotient (ISQ) value. The Implant Stability Quotient (ISQ) 
is the scale to indicate the level of stability and osseointegration in 
dental implants. The scale ranges from 1 to 100, with higher values 
indicating greater stability. The acceptable stability range lies between 
55-85 ISQ [23]. This above-mentioned process is followed by new 
bone apposition initiated by osteoblastic activity, leading to adaptive 
bone remodeling around the implant [24,25]. 
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Summarizing, implant stability is one of the most important 
factors for the success of implant treatments. Although most studies 
show a correlation between bone densities and implant stability, 
some studies suggest the opposite, probably due to the differences 
in the methods used. Recent studies suggest that implant stability 
during the healing process only increases for implants with low initial 
stabilities; meanwhile, loss of stability during healing can be observed 
in implants with high initial stabilities [26-28]. 

In vitro evaluation of stability
In vitro cell culture models are routinely used to study the 

response of osteoblastic cells in contact with different substrates for 
implantation in bone tissue. Cell cultures focus on the morphological 
aspect, growth capacity and the state of differentiation of the cells 
on materials with various chemical, composition and topography 
[29,30]. It is well documented that the biochemistry and topography 
of biomaterial surfaces play a key role in the success or failure upon 
placement in a biological environment [31]. Wettability, texture, 
chemical composition and surface topography are properties of the 
biomaterials that directly influence their interaction with cells [32-
34]. Historically, the gold standard method used to evaluate the 
degree of osseointegration was microscopic or histologic analysis. In 
addition, biological responses can be measured by cell morphology 
and cell activity (cell adhesion, differentiation and proliferation) [35-
40]. 

Because cell interactions with extracellular matrix directly affect 
the cellular processes of adhesion, proliferation and differentiation 
[41], the surface properties of biomaterials are essential to the 
response of cells at the biomaterial interface, affecting the growth 
and quality of newly formed bone tissue [42]. Cell activity is strongly 
related to implant surface morphology and topology and is related 
to the process of osseointegration [30]. Actually, these surface 
characteristics collectively are one of the three major requirements for 
placed implants to exhibit subsequent retention in the bone (in other 
words, osseointegration)-known as morphological compatibility 
[2,3]. Two other requirements are biological compatibility and 
biomechanical compatibility [2,6]. To manipulate surface structure 
to maximize morphological compatibility to bone, various methods 
and techniques have been proposed including: as-machined, blasted 
surface, acid or alkaline etching, chemical treatment on blasted 
surface, hydroxyapatite coating, and more recently biomimetic 
calcium phosphate coatings [2].

In vivo animal evaluation of stability
It is generally believed that outcomes on the initial biological 

behavior of implantable materials obtained in vitro can’t be fully 
correlated to in vivo performance. Cell cultures can’t reproduce 
the dynamic environment that involves the in vivo bone/implant 
interaction, and their results can only be confirmed in animal models 
and subsequently in clinical trials [29,43,44]. Irrespective to the 
different animal models or surgical sites, valuable information can be 
retrieved from properly designed animal studies. Static and dynamic 
histomorphometric parameters plus biomechanical testing are 
recommended as measurable indicators of the host/implant response 
where different surface designs are compared. Bone-to-Implant 
Contact (BIC), which is the most often evaluated parameter in in vivo 
studies, together with bone density and amount and type of cellular 
content, are examples of static parameters [44]. 

Besides histological analyses, biomechanical tests (torque, push-
out, pullout, etc.) can measure the amount of force that a torque needs 
to fail the bone-implant interface surrounding different implant 
surfaces [20, 45-48]. Considering the several factors that influence 
osseointegration, the evaluation of the largest possible number of 
host/implant response parameters is desirable to better understand 
bone healing adjacent to different implant surfaces. These tests can 
clarify indications of use and provide direction regarding immediate/
early loading. These tests check clinically for mobility with the help 
of blunt ended instruments, cutting torque resistance, reverse torque 
and resonance frequency analysis [26,49,50].

In the majority of publications, canine [51,52], sheep/goat [53-
55], pig [56], rabbit [40,57-60], rat and mice [61-64] are popular 
animal models, as are nonhuman primates [65,66]. Although 
animal models appear to be a well-established approach to provide 

Figure 1: Two placed implants at #6 and #7 in the right mandible.

Figure 2: X-ray images; a: intraoral x-ray image in the condition in which the 
specimens were received; b: intraoral x-ray image after the superstructure 
was removed (#6); c: intraoral x-ray image after the superstructure was 
removed (#7).
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valuable and applicable information to the human condition, there 
are still several concerns. Some results from in vitro studies can 
be difficult to extrapolate to the in vivo situation because there are 
differences in bone composition between the various species and 
humans. While no species fulfils all of the requirements of an ideal 
model, an understanding of the differences in bone architecture and 
remodeling between the species is likely to assist in the selection of 
a suitable species for a defined research question [66]. Another of 
the main problems associated with the in vivo tests using animal 
models is the test duration and its validity for application. Dziuba 
et al. [59], using rabbit’s model, investigated the biological behavior 
of Mg implantable alloy over 12 months. Amerstorfer et al. [63] 
conducted in vivo tests using Sprague-Dawley rats for 12 months to 
investigate the biodegradability for Mg alloy as a potential implant 
material. Furthermore, Akens et al. [53], using sheep over for 18 
months, studied the efficacy of photo-oxidized bovine osteochondral 
transplants. Although these tests showed promising results, a longer 
period of testing is required before applying the materials to human 
subjects.

The relevance of results obtained from animal models has 
been subject to great debate. The use of animal models in the study 
of dental implants has contributed greatly to understand many 
different devices in used and is often an essential step in the testing of 
orthopedic and dental implants prior to clinical use in humans [66]. 
Animal testing plays a major role in assessing the safety and efficacy 
of dental implants. To date, animal testing has shown the nature of 
soft tissue attachment to implants and the types of interfacial tissues 
within bone sites. There have been an increasing number of studies 
correlating animal tests with in vitro analysis and human studies. 

Evaluation on human samples
Mangano et al. [67] placed a dental implant in the posterior maxilla 

(#14) of a 48-year-old female. The implant was an Anyridge type 
with a nanostructured calcium-incorporated surface as a biomimetic 
coating. The patient was subjected to immediate functional loading. 
A month later, due to a traumatic injury causing mobilization of the 
fixture, the implant was removed. The sample was investigated under 
SEM observation. It was reported that (i) the surface of the implant 
(for one month) showed a highly-structured texture, carved by 
irregular, multi-scale hollows reminiscent of a fractal structure, and 
(ii) the human specimen showed trabecular bone firmly anchored 

to the implant surface, bridging the screw threads and filling the 
spaces among them. They concluded that histological analysis 
indicated that the nanostructured calcium-incorporated surface was 
covered by new bone, one month after placement in the posterior 
maxilla, under an immediate functional loading protocol [67]. The 
research group conducted another human evaluation. Ten totally 
edentulous subjects (age ranging from 46 to 77 years old) received 
two transitional implants: one tapered implant with a nanostructured 
calcium-incorporated surface and one cylindrical implant with a 
sandblasted surface as a control. The implants were placed according 
to a split-mouth design and immediately loaded to support an 
interim complete denture. After 2 months, they were removed for 
histologic and histomorphometric analyses, and BIC and BD (bone 
density) calculations. It was concluded that in the posterior maxilla, 
under immediate loading conditions, implants with nanostructured 
calcium-incorporated surfaces seem to increase the peri-implant 
endosseous healing properties [68]. 

We have been reviewing implant-related research using animals, 
and human samples with implants placed for 1-2 months. The 
specific aims of this study were (i) to conduct SEM observation and 
histological analysis on implant samples retrieved from a cadaver 
who had implants placed for about 5 years, and (ii) to compare results 
to those obtained from animals (at longest 18 months) and human (1 
and 2 months duration).

Subject and Methods
About the cadaver

The subject of this report died on February 2018 when he was 
99 years old. The cadaver was immediately subjected to a topical 
disinfectant spray and wash for preservation purposes. Serology was 
performed and results indicated that Hepatitis B Surface Antigen was 
negative, Hepatitis C Virus Antibody was negative and HIV 1/0/2 
Ab was also negative. According to the chart attached to the cadaver, 
the Genesis® implant was placed at #6 or #46 in his right mandible 
on November 2011 (when he was 92 years and 9 months old) and 
the PrimaConnex® implant was inserted at #7 (or #47) in his right 
mandible on May 2012 (when he was 93 years and 3 months old) 
(Figure 1).

Cutting the block for X-ray imaging
A block about 20mm apart from both mesial and distal sides was 

Figure 3: Photos for histology analysis.a: Resin-embedded #7 with methyl methacrylate; b: Villanueva Goldner stained sample #7.
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removed from the cadaver mandible for X-ray imaging. 

Histological analysis
For the histological evaluation of osseointegration of titanium 

implants, the cadaver samples were firstly treated with alcohol and 
acetone for washing and delipidation purpose. The thus treated 
samples were immersed in the following sequential solutions; a mixture 
of methyl methacrylate monomer and acetone with equal amount, 
single solution of methyl methacrylate monomer, and then a mixed 
solution (immersion-embedding solution) of methyl methacrylate 
monomer + methyl methacrylate polymer + benzoyl peroxide to 
embed the samples. The MMA resin blocks were fabricated by gradual 
heating up from 30ºC for polymerization. Using the microtome cutter 
ISOMET1000 (BUEHLER) and micro cutting machine BS-300CL 
(EXACT), one samples was prepared with thickness of about 500μm 
along the cross sectional sagittal plane from the center portion of the 
implant main body. The sample was polished down to the thickness of 
about 40μm with the micro grinding machine MG-400CS (EXACT). 
The sample was finally subjected to the Villanueva Goldner staining 
[44,69,70] and histological investigation was conducted with the 
optical microscope ECLIPSE (E600) (Nikon Corp., Tokyo). 

In general, it is believed that the Bone-to-Implant (BIC) is defined 
as the linear surface of a dental implant in direct contact with the 
mineralized bone which is expressed as percentage of the total surface 
of endosseous dental implant at the light microscopic level. Hence, 
the BIC value can be treated as an osseointegration indicator [71]. 
Histomorphometric examination on bone-to-implant relationship 
has been still considered the gold standard for analyzing bone 
formation and healing process, and assessing the osseointegration 
[16,44,68,72-75]. Although the original concept for BIC evaluation 
was developed for metallic dental implant, Han et al. [76] applied 
to nonmetallic implant (i.e., zirconina implant) and claimed its 
acceptable applicability. While keeping the same definition of BIC, 
there are several newly developed techniques [77,78]. Manresa et 
al. [77] used the back-scattered scanning electron microscopy and 
Balatsouka et al. [78] applied the stereological technique to show 3D 
BIC value. Accordingly, it is not good enough to mention the BIC 
value, rather it appears to be necessary to add a word by which the 
method for BIC evaluation to differentiate data obtained by other 
method. Hence, the authors would like to propose a term “H-BIC as 
a histomorphometric bone-to-implant contact”.

SEM analysis
The samples were fixed with 2% Paraformaldehyde (PFA) and 

2% Glutaraldehyde (GA) in 0.1 M cacodylate buffer pH 7.4 at 4ºC 
overnight. The samples were additionally fixed with 1% tannic acid 
in 0.1 M cacodylate buffer pH 7.4 at 4ºC for 2h. After the fixation 
the samples were washed 4 times with 0.1 M cacodylate buffer for 30 
min each, and post-fixed with 2% Osmium Tetroxide (OsO4) in 0.1 M 
cacodylate buffer at 4ºC for 3 h. Then, the samples were dehydrated in 
graded ethanol solutions (50%, 70 %, 90 %, 100 %). The schedule was 
as follows: 50 % and 70 % for 30 min each at 4ºC, 90 % for 30 min at 
room temperature, and 4 changes of 100 % for 30 min each at room 
temperature. After these dehydration processes, the samples were 
continuously dehydrated with 100 % ethanol at room temperature 
overnight. The samples were substituted into tert-butyl alcohol at 
room temperature. The schedule was as follows: 50:50 mixture of 

ethanol and tert-butyl alcohol for 1 h, 3 changes of 100 % tert-butyl 
alcohol for 1 h each followed by being frozen at 4 ºC. The frozen 
samples were vacuum dried. After drying, the samples were coated 
with a thin layer (30 nm) of osmium. The samples were observed by a 
scanning electron microscope (JSM-7500F; JEOL Ltd., Tokyo, Japan) 
at an acceleration voltage of 3.0 kV.

Results 
General observation

A Keystone series Genesis® implant was placed at #6 and a Keystone 
series PrimaConnex® implant was inserted at #7, respectively. It 
appears that the final restoration was a single crown type and cement-
bonded with porcelain-fused-to-metal crown. Moreover, a saucer-
shaped bone defect (or saucerization) was observed about 5mm 
around the entire periphery of the placed implants, and the threaded 
portion was exposed around the supra-bony zone. 

X-ray imaging and comments
Sub-marginal contour of the #6 final restoration was over-contour 

appearance and a space was found at the proximal sides between #6 
and #7 see (Figure 2). Final restoration #7 was ill-fitted to the abutment 
and about 1mm gap there between was observed. Saucerization was 
found at both #6 and #7 and bone loss was indicated about 1/3 to 1/2 
of the implant length and it was more emphasized at interdental area.

Due to improper implant morphology and insertion, and perhaps 
because of the man’s age and intraoral hygiene, severe implant 
periodontal disease developed, causing exposure of the micro-thread 
portion of the implant in the supra-bony zone. This might occur for 
several reasons; 

Fixture: The fixture was inserted slightly deeper than the 
surrounding bone ridge level and the micro gap appears to be set 
much deeper than the sub gingival margin. In particular, the reason 
for #7 revealing severe implant periodontal disease might be due to 
several factors, including smaller implant size compared to the #6 
implant, possibly different implant material (accordingly different 
mechanical properties), and adverse influence of occlusal (jiggling) 
force than #6.

Final restoration: There was over-contour on #6, and #7 was 
poorly cement-bonded, causing a contact space between both 
implants.

Figure 4: SEM image of #6 sample (50.6:1), where i indicates the implant 
and b is bone.



J Dent & Oral Disord 4(5): id1105 (2018)  - Page - 05

Tominaga T Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

Histological examination
Relatively thick calcified bone was noticed at the implant collar 

and apex sides with thick trabeculae. Proximally, scattered osteoid 
was evident (Figure 3a). The implant main body was covered with 
thin mineralized bone and vascular ingrowth was observed locally.

Mineralized surface (green area in Figure 3b) in direct contact 
with the implant was measured. The total implant surface length 
was 304.494 mm, and the mineralized portion was 169.528 mm. 
Accordingly, the H-BIC (histomorphometric bone-to-implant 
contact) at this site was 55.68%. 

SEM observation
Analysis of the SEM showed that bone matrix was apposed to the 

implant surface and no connective tissue was found between the bone 
and implant, indicating excellent osseointegration (Figure 4). 

Discussion
In general, osseointegration was recognized in a length span 

between 5 and 6 mm. Final prosthetic restorations for both implants 
were cement-bonded to the fixture and the restorations were single 
unit porcelain-fused-to-metal crown. Due to the relatively low height 
of the abutments, thick keratinized gingiva was not established. It 
appears that the platform switching method in which alveolar bone 
levels around the implants are preserved was not performed [79,80]. 
Implant placements were evaluated as satisfactory, except insertion 
depth was insufficient. Both exhibited peri-implantitis. 

Judging from the x-ray image, the #6 implant was placed more 
deeply than necessary, resulting in more saucer-shaped bone 
resorption. The lingual side of the implant was completely immersed 
inside the bone structure, suggesting that the #6 implant was thicker 
in diameter and wider in bone width. Moreover, the fixture height 
was not sufficiently high, so that the connecting portion between 
the prosthesis and the abutment (cement line) is deeper. Figure 1 
shows insufficient keratinized gingiva. The emergency profile from 
the platform shows over-contour, suggesting the prosthesis had high 
plaque retention [81].

There was a large gap in margin height between these two, 
resulting in difficulty for controlling the adjacent gingiva. Particularly 
on the mesial side of #7, bone resorption was noticeable. Moreover, 
the #6 prosthesis had a further problem in that there was excess 
cement extruded from the buccal side of #7 and plaque control was 
not easily performed. 

Fixtures with collars having different height were used in this 
case, and the abutment of #6 was closer to the bone, causing pressure 
on the gingiva. The excess pressure might have caused the bone 
resorption.

It appears to be that the classic X-ray imaging technique is still 
effective in a wide range of treatments; including diagnosis [82], 
examining early stage of osseointegration and healing process 
[45] and even prognosis [83]. The H-BIC value of 55.68% is very 
acceptable in comparison with reported values of 29% [84] and about 
55-60% [85,86].

Because this is a case report, it is impossible to conduct statistical 
analysis. Placing an implant in a patient who was over 90 years old 

should have contributed to enhancement of the patient’s quality of 
life. At the same time, we should express our sincere respect to his 
dentist who diagnosed the patient’s intraoral condition and pursued 
the implant surgery rather than the removable partial denture 
treatment. In the future, it is recommended that the implant be 
designed by considering the implant supported overdenture and high 
self-cleaning capability.

Conclusion
A man, who received dental implants on his right mandible when 

he was 92-93 years old, more than 5 years before his death, was the 
subject to this study. Surprisingly given his age, the placed implants 
exhibited satisfactory osseointegration. The H-BIC value was about 
56%, which is fairly good for an aged patient. Results from the 
present study agree with results reported on animal models (eg, rat 
[87], rabbit [88] and dog [89]) and human samples (for a short period 
of time [67,68]). We conclude that ordinary animal test results are 
applicable to human beings for the evaluation of long-term longevity 
of oral implants.
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