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Abstract

A key element for the success of a dental implant and its superstructures 
is related to bite forces, quality and quantity of jaw bones and implant design, 
among others. The goal of this study was to analyze load distribution in implant-
supported dentures using probabilistic fatigue. 3D models were created 
employing the CAD software. An oblique load of 150 N with a 30° inclination 
in the linguo-buccal direction was applied. Calculations of stresses of the 
prosthesis and the bone were made. Then, the fatigue life (mean and variance) 
and the probability of failure were obtained. 
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with geometry that minimize the peak bone stress [11].

The aim of the present research was to evaluate the biomechanical 
behavior in the bone around the implant as well as to assess the 
stress transfer in the implant and it superstructures using a three-
dimensional finite element analysis and predict the long-term 
behavior of the whole structure. 

Material and Methods
Finite element model

3D models were created employing the CAD software Solid 
works 2016 [Dassault Systemes, Solid Works Corp., Concord, MA, 
USA]. Dental implants were provided by the manufacturer and bone 
geometries were created employing Solid Works.

A D2 bone type [13] was simulated and their characteristics were 
obtained from Vootla and coworkers [14]. Dimensions used in the 
bone geometry ensure avoid any undesired boundary effects shows in 
Figure 1. Figure 2 details the prosthesis model analyzed in this study.

Material properties
Implants and abutments were made from Ti6Al4V, as the 

Introduction
A key element for the success of a dental implant and its 

superstructures is related to bite forces, quality and quantity of jaw 
bones, implant design, implant surface texture and surgical procedures 
[1,2]. As Li detailed in his study [3], implant diameter and implant 
length are well accepted as an important factor in success because 
they directly influence the primary stability. Clinical observations 
indicate that the most common cause of implant failure is incomplete 
osseointegration [4]. Other two potential causes of implant failure are 
parafunctional habits and excessive occlusal forces [5] and the passive 
fit and seal between the implant and its abutment components [4].

The quality of the bone varies strongly depending on the anatomic 
region in the mandible [3,6]. Density of bone is an essential factor in 
treatment planning and clinical success and it determines the surgical 
approach, the implant design and the healing time [7,8]. Cortical 
thickness tends to decrease as its moves to the posterior region of 
the mandible but increase its trabecular porosity. Some clinical 
phenomenon can be understood with a good knowledge of the bone 
density in different areas of the maxilla and mandible [9]. Some 
studies have described the close relationship between the bone density 
and the success of dental implants where dental implants placed 
in low-density areas have a higher failure rate [9,10]. According to 
Chugh’s study [9], the density in the maxilla and mandible increases 
progressively from the midline to the posterior region because of the 
stress distribution.

Type of loading, material and geometric characteristic of the 
implant, bone-implant interface and the quantity and quality of the 
surrounding bone have influence on the load transfer from implants 
to surrounding bone [1,11,12]. 

The use of finite element method in the analysis of implant 
biomechanics furnishes many advantages in the simulation of 
complex clinical situations. This method makes possible, from a 
bioengineering point of view, to design and analyze dental implants 
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Figure 1: Lingual vision of the finite element model employed in the present 
study.
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manufactured provided. The elastic properties of the titanium 
alloy and bone used in the models were taken from the literature. 
All materials were modeled with linear, elastic, isotropic and 
homogeneous properties [1]. The elastic modulus and Poisson’s ratio 
of the titanium alloy was 100GPa and 0.3, respectively [15]. Young’s 
modulus and Poisson’s ratio of the bridge was 218GPa and 0.33, 
respectively [16]. Bone properties were taken from [17] and they are 
summarized in Table 1.

Boundary and loading conditions
The model was subjected to a rigid fixation restriction in the lower 

maxilla. An ideal osseo integrated screw implants was simulated. An 
oblique load of 150 N with a 30° inclination in the linguo-buccal 
direction was applied [18]. 

Probabilistic fatigue 
Physical magnitudes employed in fatigue problems are usually 

deterministic. However, there are a lot of uncertainties that can 
seriously compromise the usefulness and validity of the system. 
Geometrical and material properties or applied loads in the structure 
are some of them, which are clearly justified in some problems as, 
dental implants.

The model proposed in this study is based on probabilistic 
finite element method and Markov chains [19]. The main difference 
between this model and other studies available in the literature is that 
we consider the uncertainties of the most important factors in this 
phenomenon and we include them in the mathematical model. Finite 
element analysis obtains the stress and strain distribution considering 
that loads and material properties do not have uncertainties. However, 
the probabilistic model employed in this study keeps in mind that 
these variables are random. The reader is referred to Prados-Privado 
et al. [20] for further details about the mathematical model. 

Table 2 shows the force employed here obtained from [16] and 
the Young’s modulus and Poisson’s ratio of titanium, which have 

been considered as Gaussian random variables.

Results and Discussion
The probabilistic model detailed here was applied to evaluate the 

failure probability and the mean life of prosthesis with a Neodent® 
implant designs under average mastication forces and ideal 
osseointegration.

The stress field on implants [von Mises stress] and surrounding 
bone [maximum principal stress] was evaluated for the case of 
previous static loading. Figure 3 represents the stress distribution 
in the whole prosthesis. The maximum principal stress distribution 
predicted in the cortical and trabecular bone is 9.7MPa as Figure 4 
shows.

The highest von Mises stress in both dental implants appears 
around the neck of the implants, which is in accordance with the 
literature. 

The probabilistic methodology proposed was employed to 
estimate the principal statistics of the fatigue life [mean and variance] 
and the probability of failure of this prosthesis (Table 3). 

Figure 2: Dental prosthesis model.

Material E (GPa) µ

Titanium 100GPa 0.3

CrCo 218 0.33

Cortical bone 13.7 0.3

Cancellous bone 4 0.3

Table 1: Elastic properties of materials employed in the study (E: Elastic modulus, 
µ: Poisson’s ratio).

Force Young’s modulus

Mean 150 N 100 GPa

Variance 10N2 20 GPa2

Table 2: Stochastic data employed.

Mean fatigue life [million cycles] Variance fatigue life [million cycles2]

115 72

Table 3: Mean and variance of the fatigue life for the prosthesis.

Figure 3: Von Mises stress distribution in implants and bridge.

Figure 4: Maximum principal stress in bone.
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The failure probability of prosthesis can be now analyzed for a 
specific number of loads cycles. Probability of failure associated 
with each cycles was obtained for the maximum von Mises stress is 
detailed in Figure 5. 

Fracture phenomenon in dental implants is very sensitive to 
uncertainties in variables involved in this phenomenon but, in spite 
of this, most of the studies available in the literature have been done 
from a deterministic point of view [21,22]. The probabilistic model 
used in this research can help to understand the fracture mechanism 
in dental prosthesis because the influences of many variables are 
considered from the very beginning. 

Conclusion
This study has applied a probabilistic methodology to an implant 

prosthesis with the aim of evaluate the fatigue behavior under a natural 
masticatory force. The current approach is based on probabilistic 
finite element analysis and damage model. Load transfers to a D2 
bone in both dental implants have been also evaluated.

The model proposed here is useful to predict the biomechanical 
behavior of the prosthesis as well as the probability of failure associate 
without doing any mechanical test and, therefore, without breaking 
any implant. 
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