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Abstract

A little over a year ago, a new viral disease appeared worldwide. Much 
like earlier pathologic RNA viruses, Covid-19 can cause distinctive harmful 
effects on pregnant women and their offspring. Because of the coexistent fever 
associated with a rise in pro-inflammatory interleukins in the most severe cases, 
there is a serious concern about the baby’s neurologic development. Although 
not yet observed in many Covid-19 pregnancies, it is anticipated particularly that 
the onset of autism in the child may be realized in a year or more postpartum. 
Prior studies have reported that exclusive breast-feeding which provides a good 
source of IGF1 for the baby may well reduce the incidence of autism in such 
cases. 
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Introduction/Background
In the intrauterine development of a baby, the fetal stage is 

marked by varying levels of blood interleukins and IGF1 (insulin-like 
growth factor-1). If the baby is developing normally, without adverse 
influences in its environment, the trend over time is for serum 
interleukins to decrease and IGF1 to increase until delivery. On the 
other hand, if a maternal febrile cytokine storm occurs during the 
pregnancy, an overproduction of interleukins and reduction of IGF1 
can take place. Such a phenomenon in the past has been associated 
with various bacterial and viral infectious diseases including 
cytomegalovirus, hemophagocytic lymphohistiocytosis, group A 
streptococcus, variola virus, influenza virus, SARS-CoV-1 (severe 
acute respiratory syndrome – a coronavirus), and avian H5N1 virus. 
Without fever, adverse manifestations are reduced [1-10]. 

Since 1918, orthomyxoviruses [single-stranded RNA viruses], 
such as influenza, have been the cause of epidemics and pandemics 
every few years. These viruses are spherical with distinctive surface 
spikes made of Hemagglutinin (HA) or Neuraminidase (NA) protein. 
Beginning with 2020, Covid-19, the newest member of this pathologic 
microbial group, has exhibited aspects of cytokine excesses in many 
cases. Much like the earlier pandemics of Spanish flu and H5N1, 
such a flare-up is characterized by fever, lethargy, and dyspnea. 
These zoonotic viruses are increasingly proliferative as the human 
population grows [3,6].

A consistent finding in patients with pulmonary complications 
is the overproduction of specific pro-inflammatory interleukins. 
Cytokines can elicit responses in cell proliferation and inflammatory 
reactions. Interleukin 1 (IL1), IL6, IL17, and TNF (tumor necrosis 
factor) in particular are central to the overt harmful features of acute 
viral diseases [7,11,12]. Especially with Covid-19, the most serious 
damage appears to be localized in the lung alveoli, where the viral 
spikes attach to ACE2 receptors. As the pathogenesis progresses, lung 
injury can lead to Acute Respiratory Distress Syndrome (ARDS) [6-
11,13].

Current therapy protocols for difficult cases of COVID-19 

Mini Review 

Antepartum COVID-19 and Postpartum Autism
Steinman G* and Mankuta D
Department of Obstetrics & Gynecology, Hebrew 
University-Hadassah Hospital, Israel 

*Corresponding author: Gary Steinman, Department 
of Obstetrics & Gynecology, Hebrew University-Hadassah 
Hospital, Ein Kerem, Jerusalem 12000, Israel; Email: 
dav4601@aol.com

Received: May 03, 2021; Accepted: May 19, 2021; 
Published: May 26, 2021

include drugs such as Tocilizumab (TCZ), a monoclonal antibody 
against IL6 receptor in patients with life-threatening cytokine storm 
[14-16]. In combination with methylprednisolone, this therapeutic 
agent is reported to successfully reduce cardiovascular collapse and 
major organ dysfunction in a number of severely ill coronavirus 
patients. Another relatively new agent, Allocetra, is effective in 
reprogramming macrophages and dendritic cells [17].Under normal 
postpartum conditions, the serum IGF1 level rises until the early teen 
years, after which it slowly decreases over time. In contrast, when a 
fetus had faced a fever-generating antepartum state such as a severe 
maternal coronavirus attack, the levels of serum IGF1 of the newborn 
are diminished and of pro-inflammatory Interleukins (e.g., IL6) are 
increased [18,19]. In a postmortem examination of human autistic 
brains, increased cytokines and pathologic signs of inflammation 
have been detected [1].

Maternal death often follows a failure to recover from immune 
paralysis and irreversible lung injury. As in similar cytokine 
enhancing events with other febrifacient viruses, one would anticipate 
an upsurge in the number of autistic children in the coming months 
or years with mothers who experienced febrile antepartum Covid-19 
[12,20-23]. Antipyretics in gravidas have been somewhat successful 
in lowering the autism rate in viral illnesses [11].

Proposed Therapy
It has been reported with previous viral pandemics that gravidas 

suffering from microbe-induced fevers give birth to children who 
are more likely to exhibit autistic traits later. From various studies, 
this is apparently related to a deficiency of IGF1 and a persistence 
of enhanced IL6 in the baby after birth [5,7]. Such an IGF1 deficit 
reduces the rate of myelination and functional assembly of neo-
neuronal circuits in the baby’s brain (dysconnectivity) [24]. 

In laboratory fetal mice, increased serum IL6 is concomitant 
with low IGF levels in utero. In unaffected humans born at a mean 
gestational age of 27.8 weeks, for example, the average serum 
concentration of IGF1 is 46.6 ng/l, whereas the concentration of IGF1 
is approximately double in full term neonates. In otherwise normal 
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pregnancies, the serum IL6 at term is about a quarter of what it was in 
the middle of the gestation [25,26]. 

In pregnancies where the gravida had suffered a serious ARDS 
event before delivery, the newborns sustain IL6 levels at birth and 
beyond which are much higher than normal. Similarly, children 
with overt autism are typically found to have elevated serum IL17 
[23,26,27]. In other words, autism is more likely to arise postpartum 
if the serum IGF1 level is depressed concurrently, as in severe 
COVID-19.

The hypothetical diagram (Figure 1) displays the typical fall 
in serum IL6 and the rise of IGF1 preceding the infected phase of 
a pregnancy, as well as the opposite trends following a Covid-19 
infective/febrile event. Gross symptoms of autism in the baby usually 
become evident after the first year of postpartum life [23,26-28].

An efficacious means for supplying IGF1 to the affected newborn 
currently is breast-feeding. Human breast milk typically contains 
larger concentrations of IGF1 than milk from other sources [29-
31]. In general, autism is less common in children who have been 
fed breast milk only for up to one full year initially. It has also been 
reported that the higher the serum IGF1 level of the gravida, the lower 
is her own risk of Covid-19 death [32]. The spontaneous lowering 
of IGF1 with age might explain why older people have an increasing 
chance of dying once COVID-19 is contracted [33]. 

Such observations would suggest that virally affected pregnant 
women could also be treated with supplemental IGF1, especially at 
the critical time of a harsh attack. Vertical transfer of COVID-19 
from the mother to the unborn child is very uncommon [23]. It is 
now accepted practice in the U.S. to fortify very premature neonates 
with IGF1, leading to improved states in the first weeks after delivery 
[34]. 

As Covid-19 appeared around the beginning of 2020, it will be 
of interest to evaluate the veracity of this model once the babies of 
infected parturients reach an age of 1-3 years.

Conclusions
The past [41] and present reports are intended to provide an 

encompassing conceptual basis for elucidating the biochemical 
phenomena underlying the origin and prevention of autism. Prior 
research work in this subject has defined our understanding of what 
causes some, many, or all cases of autism. In this way, our current 

studies are sharpened as follows:

•	 Autism and IGF1 deficiency: IGF1 directly affects the rate 
at which oligodendrocytes promote myelination and neural circuitry 
development in the infantile CNS. Factors which reduce the production 
or availability of IGF1 could retard normal nerve programming in the 
fetus or neonate, leading to autism or schizophrenia.

•	 Breast-fed babies possess increased IGF1 and less frequent 
autism: The emergence of autism in young children appears to result 
from dysmyelination and dysconnectivity of brain neurons related 
to inadequate supply of IGF1 in the newborn. Breast-feeding for the 
first year following birth promotes the decreased incidence of autism 
[42,43].

•	 Prevention of later autism tendency in fetuses/neonates of 
febrile gravidas: Risk of autism is raised when the fetus is carried by 
a febrile infected mother with elevated IL1, IL6, IL17, and TNF pro-
inflammatory interleukins. Few antiviral medications have sofar been 
tested rigorously to avoid fetal/neonatal side-effects, thereby limiting 
their use in pregnant cases. Immediate postpartum treatment with 
IGF1 supplementation is feasible (e.g., IV infusion) when umbilical 
cord blood testing indicates need.
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