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Abstract

This study aims at explaining why existing machine learning methods 
have achieved limited performance when applied to the problems of seizure 
prediction using human invasive EEG (iEEG) data. We provide quantitative and 
qualitative analyses of iEEG data, as this data has commonly been used for 
seizure prediction tasks. Analyzing and understanding the iEEG signals provide 
insights into the characteristics of the preictal and interictal brain signals (i.e., the 
signals preceding and between epileptic seizure attacks). Experimental results 
show that: (1) the iEEG data varies from one patient to another. Therefore, 
iEEG features collected from a patient over a specific time period may not 
achieve reliable seizure prediction performance for other patient neither for the 
same patient at some future times, (2) for iEEG dimensionality reduction, the 
exclusion of any individual iEEG channel may result in losing spatial information 
needed for accurate seizure prediction, as the different iEEG channels contain 
complementary information. Also, Principal Component Analysis is found to 
be efficient for iEEG dimensionality reduction in seizure prediction tasks, and 
(3) For a particular patient, the distribution of the preictal and of the interictal 
iEEG data vary over time, and thus negatively affect the predictive ability of pre-
trained seizure prediction methods.

Keywords: Seizure prediction; EEG; PCA; Channel selection; Data 
mismatch

Introduction
Epilepsy is a neurological disorder that affects around 70 million 

people worldwide [1]. It is characterized by recurrent seizures 
that strike without warning. Symptoms may range from a brief 
suspension of awareness to violent convulsions and sometimes loss 
of consciousness [2]. Currently, anti-epileptic drugs are given to 
epileptic patients in sufficiently high dosages. These drugs could result 
in undesirable side effects such as tiredness, stomach discomfort, 
dizziness, and also blurred vision. Further, the patient’s quality of life 
is severely affected by the anxiety associated with the unpredictable 
nature of seizures and the consequences therefrom. This motivated 
researchers to develop automatic seizure prediction systems [3]. 
The ability to predict seizures with high accuracy could make 
individualized epilepsy treatment possible (e.g., tailored therapies 
with fewer side effects). By having warnings of impending seizures, 
the patients can take their precautions and avoid any probable 
injuries. This vision inspired the proposed research.

Even though epileptic seizures seem unpredictable and often 
occur without warning, recent investigations have demonstrated 
that seizures do not strike at random [4,5]. Most existing seizure 
prediction methods, however, achieve limited performance [6-11]. 
Only patient-specific solutions that are tailored to individual patients 
have given good results [12,13], however, these methods have poor 
ability to adapt to new unseen data gathered from other patients. 
Intracranial Electroencephalogram (iEEG) is a common tool used 
for seizure prediction. The iEEG data that directly precede seizures is 
analyzed to identify the biomarkers that indicate upcoming seizures. 
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In 2013, a big dataset of long-term iEEG recordings has been recorded 
(for 374-559 days) from three patients with drug-resistant epilepsy 
[8]. A subset of this dataset was made publicly available and used in 
the Melbourne University Seizure Prediction Competition organized 
in November 2016 on Kaggle.com. In [12], Kuhlmann et al. describe 
the human iEEG dataset used in this contest and the results achieved 
by the top eight seizure prediction solutions. Most of these solutions, 
however, are patient-specific and have a lower chance of being able 
to generalize beyond the statistical patterns of the training examples.

Neuroscientists have found that the temporal dynamics of the 
brain activity of epileptic patients can often be categorized into four 
different states: preictal (directly prior to a seizure), ictal (during a 
seizure), postictal (directly after a seizure), and interictal (between 
two consecutive seizures). Accurate seizure prediction solutions 
necessitate that prediction methods are able to differentiate between 
the preictal and interictal brain activities with high levels of accuracy. 
In this work, we provide extensive analyses of the human iEEG data 
preceding seizures (i.e., preictal) and between consecutive seizures 
(i.e., interictal). These analyses present some insights into the brain 
data and help us to better understand the unpredictable nature of 
epileptic seizures that we have been attempting to quantify.

As the success of seizure prediction solutions rely on their ability 
to differentiate between the interictal and preictal brain states, we 
first investigate whether interictal and preictal iEEGs are statistically 
different. We also study dimensionality reduction of iEEG data, as the 
huge amount of iEEG data involved in seizure studies could hamper 
the practical applicability of feature engineering and classification 



Austin J Clin Neurol 8(1): id1144 (2021)  - Page - 02

Hussein R Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

procedures. We study whether the popular Principal Component 
Analysis (PCA) could be effectively used for reducing the iEEG 
dimensional space, and whether excluding some iEEG channels (i.e., 
sensors) could result in reliable dimensionality reduction. Finally, 
we examine the cross-correlations between the different iEEG sensor 
readings during the preictal and interictal brain states and how could 
this knowledge be used. Below we first describe the human iEEG data 
and the subjects employed in this paper.

Subjects and Data
The iEEG data used is from the 2016 Kaggle seizure prediction 

competition and is described in [12]. The data were recorded 
constantly from humans suffering from refractory (drug-resistant) 
focal epilepsy using the NeuroVista Seizure Advisory System 
(described in [8]). Sixteen electrodes (4×4 contact strips) were 
implanted in all patients, directed to the presumed seizure focus, 
and connected to a telemetry unit embedded in the subclavicular 
area. Data were sampled at 400Hz, digitized using a 16-bit analog-
to-digital converter, wirelessly transmitted to an external hand-held 
advisory device, and continuously stored in a removable flash drive. 
(Figure 1) shows an example of a Computerized Tomography (CT) 
scan of the head of one of the patients and reveals the locations of the 
16 iEEG electrodes on the cortical surface of the brain.

Three drug-resistant patients who also had the least seizure 
prediction performance in [8] were chosen for our study. The selection 
of these patients was propelled by the intention to understand why 
40% of the epileptic patients do not respond to medications. The large 
number of seizures recorded per patient (~380) gives us the chance 
to explore the common signatures or biomarkers within the iEEG 
recordings preceding seizures. The three patients were females and 
they all had resective surgery (i.e., removal of a small portion of the 
brain) before the trials. The first, second, and third patients were 22, 

51 and 53 years old at the time of the clinical trial (i.e., in time of iEEG 
acquisition), but were diagnosed with epilepsy at the age of 16, 10 and 
15, respectively.

As stated above, the key challenge in seizure prediction is to 
differentiate between the preictal and interictal brain states in people 
with epilepsy. In our study and also in previous seizure prediction 
work, only the lead seizures of every patient were used. Lead seizures 
are those that occur at least 4 hours after a previous seizure. The 
captured iEEG data were labeled and separated into training and 
testing sets. The testing data clips were recorded a long time (a few 
months) after recording the training data clips. As shown in (Figure 
2), the preictal data clips were extracted from the 60 minutes prior to 
the lead seizures, with 5 minutes offset from the Seizure onset (Sz). 
Interictal clips were segmented from 60 minutes iEEG recordings that 
started at an arbitrarily time that was 4 hours after any seizure and 
ended at least 3 hours before the consecutive seizure.

Are Interictal and Preictal iEEGs Statistically 
Different?

Most seizure prediction problems focus on the difference between 
the interictal and preictal brain states. Then the following question 
arises: Are the interictal and preictal iEEGs statistically different? If 
yes, then can we use their statistical features to distinguish between 
them? In an effort to address this question, we use boxplot-a popular 
descriptive statistics tool-to present the interictal and preictal 
iEEGs distributions across all channels. The boxplot presents the 
data distribution using the five-number summary: minimum, first 
quartile, median, third quartile, and maximum. The first quartile 
is the median of the data whose values are less than the median 
and the third quartile is the median of the data whose values are 
above the median. The difference between the maximum and the 
minimum numbers is referred to as “overall range” and the difference 

Figure 1: CT scan of the NeuroVista seizure advisory system implanted in a patient [8].

Figure 2: Examples of one-hour preictal iEEG signals with a 5-minute offset before seizures. Sz stands for the seizure onset.
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between the first quartile and the third quartile is referred to as the 
“interquartile range, IQR”.

Figure 3 shows a comparative boxplot for Patient 1’s interictal 
and preictal iEEG sensor readings. For each of the 16 sensors, the 
interictal data boxplot (in blue) is on the left of the preictal data boxplot 
(in green). It can be noticed that, for most of the iEEG channels, 
the overall range (represented by the vertical distance between the 

maximum and the minimum values) and Interquartile Range (IQR: 
represented by the vertical length of the box) of the preictal data are 
much greater than those of the interictal data. For the second patient, 
however, the overall range and IQR of the preictal data are smaller 
than those of the interictal data. For both patients, we also observe 
that both interictal and preictal iEEG data series include large outliers 
(an outlier is a point which falls more than 1.5 times the interquartile 
range below the first quartile or above the third quartile).

Figure 4: Explained variance by different principal components of preictal iEEG data for Patient 1.

Figure 3: Boxplots of Patient 1’s interictal and preictal iEEG data.
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The difference between Patient 1 and Patient 2 and also patient 3 
shows that the interictal and preictal data of any patient have different 
dispersion (which implies that they are statistically different), however 
their statistical features may only be used for building patient-specific 
seizure prediction systems. Based on our observations for different 
patients, we came to the conclusion that “There are no typical trends 
in either interictal or preictal data across different epileptic patients. 
The iEEG data of each patient has its own characteristics, and the 
statistical features can solely be meaningful for building patient-
specific seizure prediction systems”.

Dimensionality Reduction for Seizure 
Prediction Purposes
Investigating the use of Principal Component Analysis 
(PCA) for iEEG dimensionality Reduction in seizure 
prediction

Health care personnel should be informed as soon as possible 
when patients are experiencing a seizure attack. Similarly, patients 
and health personnel should be also warned as soon as possible about 
an impeding seizure a patient may experience. It is therefore crucial 
to carry seizure detection and seizure prediction in real-time or as 
fast as possible. For such methods to be of practical use, the reduction 
of EEG/iEEG data is thus necessary for their fast implementation. 
Here we investigate two methods for iEEG data reduction. The first 
is Principal Component Analysis (PCA) and the second is channel 
reduction. PCA been widely used in reducing the dimensionality of the 
scalp Electroencephalogram (EEG) data for seizure onset detection. In 
this study, we investigate the possibility and effectiveness of PCA for 
iEEG dimensionality reduction for seizure prediction purposes. PCA 

has been a popular tool for dimensionality reduction as it projects 
higher dimensional data to lower dimensional data. Efficient PCA 
holds a great potential for reducing the dimension of multi-channel 
EEG data, and hence speed up the subsequent machine learning 
algorithms (e.g., feature extraction and classification), minimizing 
the computation time of the overall EEG-based diagnostic tools 
for neurological disorders. PCA can help remove the redundancy 
in multi-variate EEG data, while maintaining most of the variance 
(information) in the observed variables. A useful measure is the 
“explained variance”, which can be calculated from the eigenvalues 
to measure how much information can be represented by each of the 
principal components.

The work presented in [15] demonstrated how PCA could 
be effectively used in selecting the optimal feature subset from the 
original EEG feature set, and therefore improve the epileptic seizure 
detection performance and also detection time. PCA has been shown 
to be an efficient data reduction tool that preserves the crucial EEG 
data variance and achieves reliable seizure detection results. The 
question that arises here is: Can we also use PCA for efficient iEEG 
dimensionality reduction in epileptic seizure prediction tasks? To 
answer this question, we applied PCA to the invasive EEG data under 
study. We then tested whether the 16 iEEG channels can be mapped 
into a fewer number of principal components. The common criterion 
is to select the minimum number of principal components such that 
90-95% of the data variance is retained.

Figures 4 shows the individual principal components (colored 
in blue) and the cumulative principal components (colored in red) 
for both the preictal iEEG data of Patient 1. Unexpectedly, Figure 4 

Figure 5: Heatmap of pairwise correlation values of iEEG sensor readings of Patient 1.
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shows that, the first Principal Component (PC1) accounts for a small 
amount of the data variance (~16%), and the crucial 95% of the data 
variance is contained in 14 principal components. Therefore, only the 
15th and 16th principal components can be dropped without losing 
too much information. This implies that we cannot rely on the PCA 
method for considerable iEEG dimensionality reduction in seizure 
prediction problems.

Investigating the Exclusion of some iEEG Channels/
Sensors

Since PCA has (unexpectedly) been found to be inefficient in 
reducing the dimensionality of the human iEEG data in seizure 
prediction problems, we study whether channel selection (using 
only the data from some particular channels) could be used for 
reliable iEEG dimensionality reduction. The channels to be excluded 
are those that will be found to be less relevant or redundant. There 
is always a trade-off between selecting fewer iEEG channels and 
retaining as much spatial information as possible. The work presented 
in [16] investigated the epileptic seizure detection performance for 
different channel selection configurations. Using all EEG channels 
(22 channels) achieved the highest seizure detection performance. 
Selecting a moderately fewer number of EEG channels (e.g., 16 and 
8) reduces the amount of data to 36-72 % of its original size, and 
results in a minor decay in the seizure detection performance [16]. 
Channel selection of scalp EEG data was then found to be a successful 
dimensionality reduction tool in seizure detection tasks. However, 
studies on channel selection of iEEG data for seizure prediction is 
still lacking and cannot be deduced from those carried for seizure 

detection. This is because for seizure prediction, one major factor 
is the differentiation between preictal and interictal data, while for 
seizure detection it is the differentiation between ictal and interictal 
data.

Figure 5 depicts the correlation heatmaps of preictal iEEG sensor 
data of Patient 1, displaying the dependency relationships between 
the 16 iEEG sensor readings. As proven in [17], if the predictive 
ability of a certain channel X is covered by another channel, then 
channel X can be safely removed. (Figure 6) displays the clustered 
heatmaps of the preictal iEEG sensor data for Patient 1. The data 
displayed in (Figure 5) can be re-organized to uncover that it can 
be categorized into three main clusters; each cluster includes a set of 
sensors (channels) that have similar correlations. These are shown in 
(Figure 6). The first cluster comprises the sensors S3, S4, S7, S12, and 
S15, while the second cluster includes S2, S6, S11 and S14, and the 
third cluster includes S1, S5, S8, S9, S10, S13 and S16. If two sensors 
have analogous correlation profiles, one of them could be excluded. 
Following this rule, the first cluster could be represented only by S3, 
S4 and S12, and the second cluster could be represented only by S6 
and S11, and the third cluster could be represented by S1, S5, S8 and 
S9.

For Patient 2, the same procedure was carried out, but a different 
combination of channel clustering was obtained. This is despite the 
fact that both Patients 1 and 2 have been diagnosed with focal epilepsy, 
yet (it should be noted that) we have found that they have different 
preictal iEEG channel correlation clusters. The main reason why the 
iEEG of different patients have different clustered heatmaps is that 

Figure 6: Hierarchically clustered iEEG sensors with dendrograms and clusters in Patient 1.
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patients have seizures with different epileptogenic zones. Patient 1, 
for example, was diagnosed as parietal-temporal lobe epilepsy, while 
Patient 2 was diagnosed as occipito-parietal lobe epilepsy. In brief, 
the correlations between iEEG sensors vary depending on which brain 
region is affected and whether the seizure is focal (partial) or generalized. 
Therefore, if seizure prediction researchers decided to use channel 
selection for the important reason of dimensionality reduction, it is 
important that the selection be customized for individual patients.

iEEG Data Mismatch?
The terms “data mismatch”, “concept drift” and “covariate shift” 

have been used to refer to situations where the data distribution 
changes over time [18]. Often, the distribution of a particular data 
class (e.g., interictal or preictal) is assumed to not change over time, 
implying that the distribution of the historical data is the same as the 
distribution of the new data. While this assumption holds for many 
machine learning problems, it is not necessarily true for all problems. 
In some cases, the characteristics of the data vary over time, and 
hence the predictive models trained on historical data are no longer 
valid for making predictions on new unseen data. After screening the 
characteristics of the iEEG data under study, we found that, for each 
individual patient, the distribution of the interictal or the preictal 
iEEG data in the training set is different from that in the testing set. 
A potential reason for such a data mismatch is that the testing data is 
recorded a few months after recording the training data. During this 
time, the patient may have been positively or negatively influenced by 
factors such as anti- epileptic medications.

Figure 7 depicts how the preictal iEEG data distributions of Patient 
1 have changed over time. The top plot explains how the density of 

Figure 7: Data mismatch in Patient 1’s preictal iEEG sensor data.

the training set of the preictal iEEG signals recorded by Channel S1 
differs from that of the testing set. The testing data was recorded a 
few months after recording the training data. Similarly, the bottom 
plot demonstrates the variation in the preictal iEEG density for 
Channel 2. The above implies that the training of a seizure prediction 
system should be repeated once the system is observed to not work 
accurately, or the system should be designed so that it’s training is 
done in an adaptive fashion, i.e., the system continuously learns from 
its new experiences and updates its coefficients accordingly.

Conclusion
This work provided, for the first time, a detailed quantitative 

and qualitative examination of the characteristics and behavior of 
the human brain iEEG data during the preictal and interictal brain 
states. From the conducted analyses, we can deduce the following 
recommendations for researchers building future EEG-based seizure 
prediction algorithms: i) There is no typical trend in either interictal 
or preictal data across different epileptic patients. The iEEG data of 
each patient has its own characteristics, and its statistical features can 
solely be meaningful for building patient-specific seizure prediction 
systems. The statistical features extracted from the data of a group 
of patients may not generalize to other patients or even to the same 
patients at later time; ii) for iEEG dimensionality reduction, the use 
of PCA is not recommended, neither is the use of channel deletion. 
Each individual principal component or iEEG channel carries a non-
trivial amount of information and most of the principal components 
or iEEG channels should be employed for efficient feature learning 
and classification. Therefore, more efficient techniques for iEEG data 
reduction should be sought. Such observations demonstrate why 
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epileptic seizure prediction using iEEG data remains a challenging 
topic and why traditional machine learning algorithms that rely on 
domain-based features have a limited seizure prediction performance.
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