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Abstract

Objective: To determine neuroprotective effects of Ellagic acid (EA) as a 
preventive herbal drug to impede cholinergic dysfunctions and oxidative stress 
in Alzheimer’s disease (AD) in scopolamine induced Alzheimer’s type dementia 
in rats.

Methodology: Alzheimer’s type dementia was induced by intraperitoneal 
injection of scopolamine (0.7 mg/kg, i.p.) to rats for period of 7 days. EA (25 
mg/kg or 50 mg/kg, p.o.) or Donepezil (0.5 mg/kg, p.o.) alone was treated for 6 
days and then scopolamine (0.7 mg/kg, i.p.) was administered together with EA 
or Donepezil for another 7 days. Memory-related behavioral parameters were 
evaluated using the elevated plus maze (EPM) once a day for 2 consecutive 
days and Morris water maze (MWM) once a day for 5 consecutive days. At the 
end of protocol schedule i.e day 14, biochemical parameters were estimated. 
AChE, MDA, GSH, catalase and SOD to evaluate the neuroprotective action of 
EA via AChE inhibition and antioxidant activity.

Result: Scopolamine treatment increased the transfer latency in EPM, 
escape latency time and shortened time spent in the target quadrant in 
MWM; these effects were reversed by EA. Scopolamine-mediated changes in 
malondialdehyde (MDA) and AChE activity were significantly attenuated by EA 
in rats. Recovery of antioxidant capacities, including reduced glutathione (GSH) 
content, and the activities of SOD and catalase was also evident in EA treated 
rats.

Conclusion: The present findings sufficiently encourage that EA has 
a preventive properties. Although EA was found to be less effective than 
Donepezil, but few modification in pharmaceutical properties it can be an 
efficient phytochemical for Alzheimer type dementia. The EA can be used to 
prevent cholinergic dysfunctions and oxidative stress associated with Alzheimer 
type dementia.

Keywords: Neuroinflammation; Oxidative stress; Acetylcholinesterase; 
Polyphenols

Introduction
Alzheimer’s disease (AD) is a severe neurodegenerative disorder 

that gradually results in loss of memory and impairment of cognitive 
functions in the elderly [1,2].

Many naturally occurring compounds have been proposed as 
potential therapies to slow or prevent the progression of AD, mostly 
by acting as antioxidants [3-5], but also with some direct anti-amyloid 
actions [6-8]. Recent studies have suggested the positive effects of 
dietary antioxidants as an aid in potentially reducing somatic cell and 
neuronal damage by free radicals [3,9,10]. The beneficial health effects 
of plant-derived products have been largely attributed to polyphenolic 
compounds, as well as vitamins, minerals and dietary fibers [3,4,11].

Ellagic acid (EA), a non flavonoid polyphenol, plays an essential 
role in explaining the pharmacological properties of fruits, food 
and beverages which exhibit this phyto-constituent [12-14]. EA has 
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been well proven to contain anti-oxidant [15-17], anti-inflammatory 
[18,19], anti-proliferative [20-22], antidiabetic [23,24] and 
cardioprotective [25,26] properties.

Neuroprotection can be a property of EA as it prevents both 
neuro-oxidation and neuroinflammation [27-30]. Moreover, in in-
vitro studies it was observed that EA inhibits β-secretase (BACE1), 
thus inhibiting Aβ-fibrillation and decrease AChE activity [31-
33]. Recent studies suggested that glucose metabolism is affected 
during AD [34]. The EA stimulated GLUT4 translocation primary 
factor responsible for insulin induced glucose uptake and maintain 
glucose homeostasis [35,36]. The EA also shows modulation of 
monoaminergic system (serotonergic and noradrenergic systems) 
and GABAnergic system [37,38]. Cognitive impairment in AD 
patients correlates with disturbance in various neurotransmitters, 
as the ratio of excitatory-inhibitory neurotransmitter level disturbs, 
cytotoxic damage to neurons and glia occurs and norepinephrine and 
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serotonin levels declined [39-43]. Further, Gamma-amino butyric 
acid (GABA) increases the formation of soluble receptor for advanced 
glycation end products (RAGE) and decreases the levels of full-length 
RAGE, lowering the Aβ uptake and inflammatory mediated reactions 
[44,45].

Scopolamine, an anti-muscarinic agent, competitively 
antagonizes the effect of acetylcholine on the muscarinic receptors by 
occupying postsynaptic receptor sites with high affinity and increases 
AChE activity in the cortex and hippocampus [46-50]. Scopolamine 
diminish cerebral blood flow due to cholinergic hypofunction 
[51,52]. Scopolamine additionally triggers ROS, inducing free radical 
injury and an increase in a scopolamine-treated group brain MDA 
levels and deterioration in antioxidant status [53-55]. Scopolamine 
induces neuro-inflammation by promoting high level of oxidative 
stress and pro inflammatory cytokines in the hippocampus [56-
58]. Scopolamine is proven to increase levels of APP and Tau. 
Administration of scopolamine led to marked histopathological 
alterations in the cerebral cortex, including neuronal degeneration 
[59,60]. Scopolamine administration has been used both in healthy 
human volunteers and in animals as a model of dementia to determine 
the effectiveness of potential new therapeutic agents for Alzheimer’s 
disease [61-66] (Figure 1).

Donepezil is a well established drug for clinical treatment 
and scopolamine induced Alzheimer type dementia. Donepezil, a 
reversible inhibitor of AChE, is neuroprotective due to not only 
activation of cholinergic transmission but also by reducing the amount 
of the toxic form of amyloid β fibrils [67-71]. Donepezil ameliorated 
the scopolamine induced memory impairment by reducing AChE 
activity and oxidative stress and restoring cerebral circulation [72-
74]. With this background, EA might show neuroprotection via 
inhibiting neuronal dysfunctions. This research was an attempt to 
investigate the neuroprotective effect of EA, potential of doses for the 
prevention of Alzheimer’s disease.

Material and Method
Chemicals

EA was purchased from Yucca Interprises, Mumbai, India 

and suspended in saline solution. Scopolamine hydrochloride was 
purchased from Sigma–Aldrich, St, Louis, MO, USA. Donepezil 
was obtained from Ranbaxy Pvt. Limited, Mumbai, India and both 
scopolamine and doenpezil were dissolved in saline solution. All 
reagents used in this study were of analytical grade and high purity.

Animals
Male Wistar rats (weighing 220-250 g, aged 8-10 months) 

obtained from the Animal House of the Institute were employed 
in the studies. The animals were kept in polyacrylic cages with wire 
mesh top and soft bedding. They were kept under standard husbandry 
conditions of 12h reverse light cycle with food and water ad libitum, 
maintained at temperature 22±2oC. The experimental protocol 
was approved by Institutional Animal Ethics Committee (IAEC) 
as per the guidelines of Committee for the Purpose of Control and 
Supervision of Experiments on Animals (CPCSEA), Government 
of India (RITS/IAEC/2013/01/01). Animals were acclimatized to 
laboratory conditions prior to experimentation.

Drug administration
EA was administered by oral (p.o.) route in dose of 25 mg/kg and 

50 mg/kg. Scopolamine was administered by intraperitoneal (i.p.) 
route in dose of 0.7 mg/kg. Donepezil was administered in dose of 
0.5 mg/kg, p.o.

Six groups (each group consist six rats) were employed in the 
present study. (i) Group1-Normal Control (ii) Group2-Scopolamine 
Control (0.7mg/kg,i.p.) (iii) Group3-EA Perse (50mg/kg, p.o.) 25mg/
kg, p.o. + Scopolamine (0.7mg/kg, i.p.) (vi) Group6-EA 50mg/kg, p.o. 
+ Scopolamine (0.7mg/kg, i.p.). After a 5-day habituation period, rats 
were given EA (25 or 50 mg/kg, p.o.) and Donepezil (0.5 mg/kg, p.o.) 
for total of 13 days. EA or Donepezil alone was treated for 6 days and 
then scopolamine (0.7 mg/kg, i.p.) was administered together with 
EA for another 7 days. Rats underwent locomotor activity (LMA) for 
2 days i.e. 6th day and 13th day, MWM test for 5 days i.e. 7th day to 
11th day. The day after completion of Morris water maze (MWM), 
the elevated plus maze (EPM) was conducted for 2 days i.e. 12th to 
13th day. The day after EPM, the rats were sacrificed and biochemical 
parameters were estimated (Figure 2).

Elevated plus maze 
Elevated plus maze (EPM) served as the behavioral model (where 

in the stimulus existed outside the body) to evaluate learning and 
memory in rats. It consists of two opened arms (50cm*10cm) and 
two covered arms (50cm*40cm*10cm). The arms were extended from 
central platform (10cm*10cm), and the maze was kept elevated to a 
height of 50cm from the floor. The EPM was conducted for 2 days 
i.e. 12th to 13th day of protocol schedule. Each animal was kept at the 
end of an open arm, facing away from the central platform on 12th 
day. Transfer Latency (TL), which was taken as the time taken by the 
animal to move into any one of the covered arms with all its four legs, 
recorded on 12th day i.e. acquisition trial [75]. If the rat did not enter 
into one of the covered arms within 120s then it was gently pushed 
into one of the two covered arms and the TL was assigned as 120s. The 
rats were allowed to explore the maze for 10s and then were returned 
to its home cage. TL was again examined 24hr after the first trial on 
13th day of protocol schedule i.e. retention latency.

Figure 1: Scopolamine induced experimental model of Alzheimer’s type 
dementia.
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Spatial navigation task in Morris water maze
Morris water maze employed in the present study was a model 

to evaluate spatial learning and memory. Escape from water itself 
acts as motivation and eliminates the use of other motivational 
stimuli such as food and water deprivation. Water provides uniform 
environment and eliminates interference due to olfactory clues [76]. 
Animals were trained to swim to a platform in a circular pool (180cm 
diameter*60cm) located in a sound attenuated dark test room. The 
pool was filled with water (28±2OC) to a depth of 40cm. A movable 
circular platform, 9cm in diameter and mounted on a column, was 
placed in the pool 2 cm below the water level for escape latency time 
(ELT), while during time spent in the target quadrant (TSTQ) the 
platform was removed. Four equally spaced locations around the 
edge of the pool (N, S, E, and W) were used to divide the pool into 
4 quadrants and one of them is used as start point, which was same 
during all trials. The pool was filled with opaque water to prevent 
visibility of the platform in the pool. The escape platform was placed 
in the middle of one of the random quadrants of the pool and kept 
in the same position throughout the experiments. Animals received a 
training session consisting of day 7 to 10 and ELT was recorded. ELT 
defined as the time taken by the animal to locate the hidden platform. 
ELT was noted as an index of learning. Each animal was subjected 
to single trial for four consecutive days (starting form 7th day of 
EA administration to 10th day), during which they were allowed to 
escape on the hidden platform and to remain there for 20 s. If the rats 
failed to find the platform within 120 s, it was guided gently onto the 
platform and allowed to remain there for 20 s.

On fifth day (i.e., 11th day of EA administration) the platform was 
removed. Rats were placed in water maze and allowed to explore the 
maze for 120 s. Time spent in three quadrants, that is, Q1, Q2 and Q3 
was recorded and TSTQ in search of the missing platform provided 
as an index of retrieval. Care was taken not to disturb the relative 
location of water maze with respect to other objects in the laboratory.

Assessment of locomotor activity
Gross behavioral activity was assessed by digital actophotometer 

on 6th day and 13th day of protocol schedule to rule out any interference 
in locomotor activity by drugs which may affect the process of 
learning and memory, in before and after of MWM task. Each animal 
was observed over a period of 5 min in a square (30 cm) closed arena 
equipped with infrared light-sensitive photocells and values expressed 
as counts per 5 min [77]. The beams in the actophotometer, cut by 
the animal, were taken as measure of movements. The apparatus was 
placed in a darkened, sound-attenuated and ventilated testing room.

Preparation of brain homogenate
On 14th day of protocol schedule, Animals were sacrificed by 

decapitation, brains removed and rinsed with ice cold isotonic saline 
solution. Brain tissue samples were then homogenized with 10 times 
(w/v) ice cold 0.1M phosphate buffer (pH 7.4). The homogenate was 
centrifuged at 10,000 x g for 15min, supernatant was separated and 
aliquots were used for biochemical estimations [77].

Protein estimation
The protein content was measured by using Agappe protein 

estimation kit (Biuret method).

Estimation of Acetylcholinesterase levels
The quantitative measurement of AChE activity in brain was 

performed according to the method described by Ellman et al. (1961) 
[78]. The enzymatic activity in the supernatant was expressed as nmol 
per mg protein.

Estimation of malondialdehyde
The quantitative measurement of MDA– end product of lipid 

peroxidation-in brain homogenate was performed according to 
the method of Wills (1966) [79]. The concentration of MDA was 
expressed as nmol per mg protein.

Estimation of reduced glutathione
GSH in brain was estimated according to the method described 

by Ellman et al. (1959) [80]. The concentration of glutathione in the 
supernatant expressed as µmol per mg protein.

Estimation of superoxide dismutase activity
SOD activity was measured according to the method described by 

Misra and Frodvich (1972) [81]. The activity of SOD was expressed 
as % activity.

Estimation of Catalase activity
Catalase activity was measured by the method of Aebi (1974) 

[82]. The activity of catalase was expressed as % activity.

Statistical analysis
All the results and data were expressed as mean ± standard 

deviation. Data was analyzed using two way ANOVA followed by 
post hoc test Bonferroni and one way ANOVA followed by post 
hoc test Tukey’s multi-comparison test. P<0.05 was considered as 
statistically significant.

Results
Effect of Ellagic acid on rats in elevated plus maze

On 12th day of protocol schedule, acquisition latency was 
recorded. Retention was observed as transfer latency (TL) on 13th 
day to evaluate learning and memory in rats using EPM. On 12th and 
13th day Scopolamine administered rats showed remarkable increase 
(p<0.001) (113±9.3 and 106.5±11.1 sec) in TL, when compared to 
normal (64±4.2 and 36.833±6.7 sec) and EA perse rats (63.333±10.3 

Figure 2: Protocol schedule to determine the neuroprotective effect of 
Ellagic Acid in scopolamine induced Alzheimer’ type memory and cognitive 
dysfunctions.
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and 32.833±3.3 sec). During experiment, EA perse administration did 
not reveal any change (p>0.05), when compared to normal rats in 
TL. Donepezil, a well established standard drug for AD considerably 
decrease (p<0.001) (65.5±13.0 and 21.666±5.0 sec) TL, when 
compared to Scopolamine administered rats and reversed the memory 
impairment induced by Scopolamine. Administration of EA at the 
dose of 25 mg/kg, p.o. exhibit notable decrease (p<0.001) (72.00±8.0 
and 39.333±6.1 sec) in TL, when compared to Scopolamine treated 
rats. EA (50 mg/kg, p.o.) administration also decrease (p<0.001) 
(69.333±8.0 and 25.333±3.8 sec) TL, when compared to Scopolamine 
administered rats and there were significant variation (p<0.05) 
was found in between doses of EA 25 & 50 mg/kg, p.o. indicating 
improved retention memory. Donepezil administered rats did not 
reveal any change (p>0.05) in TL, when compared to EA (25 or 50 
mg/kg, p.o.) administered rats (Figure 3).

Effect of Ellagic acid on rats in spatial navigation task 
using Morris water maze

On 7th to 10th day of 14 day protocol schedule, escape latency time 
(ELT) was observed. On 7th day, there were no significant changes 
(p>0.05) observed in Scopolamine (94.33±13.1 sec) treated rats, when 
compared to normal (89±9.8 sec) and EA perse treated (86.33±13.9 
sec) rats. EA perse administration did not show any significant change 
(p>0.05) when compared to normal rats. Moreover, Donepezil 
treated rats did not show any considerable changes (p>0.05) (88±9.0 
sec), when compared to Scopolamine and EA (25 or 50 mg/kg, p.o.) 
administered rats. In the treatment groups, administration of EA did 
not confirm notable changes (p>0.05) (96.33±10.0; 88.66±10.6 sec) 
in ELT at 25 and 50 mg/kg, p.o. when compared to Scopolamine 
treated rats. There were no changes (p>0.05) found in ELT between 
treatment doses of EA 25 & 50 mg/kg, p.o.

Comparison data of 8th day, 9th day and 10th day ELT in MWM, 
showed that Scopolamine administered rats manifest remarkable 
increase (p<0.05, p<0.001 and p<0.001) (92±8.1, 85.33±12.7 and 
83.33±8.6 sec) in ELT, when compared to normal (76.33±7.8, 
29.16±7.8 and 15.33±3.7 sec) and EA perse (67.33±5.6, 29.33±8.7 
and 15±2.8 sec) rats. EA perse administration did not show any 
significant difference (p>0.05), when compared to normal rats during 
ELT. Donepezil administered rats significantly decreased (p<0.001, 
p<0.001 and p<0.001) (51±10.1, 26.16±6.4 and 10.83±4.6 sec) ELT 
when compared to Scopolamine administered rats. EA at 25 mg/kg, 
p.o. proved remarkable decreased (p>0.05, p<0.001 and p<0.001) 
(79±10.8, 60.83±8.6 and 38.16±9.7 sec) in the ELT, when compared 
to Scopolamine administered rats. EA at the dose 50 mg/kg, p.o. 
significantly decreased (65.33±11.7, 43±9.8 and 24.5±8.3 sec) the ELT, 
when compared to Scopolamine (p<0.001, p<0.001 and p<0.001) and 
EA 25 mg/kg, p.o. treated rats (p<0.05, p<0.01 and p<0.05), indicating 
remarkable improvement in learning. Donepezil administered rats 
more significantly decreased ELT when compared to EA 25 mg/kg, 
p.o. (p<0.001, p<0.001 and p<0.001) and 50 mg/kg, p.o. administered 
rats (p<0.005, p<0.001 and p<0.005) (Figure 4).

On 11th day of protocol schedule TSTQ was performed. Time spent 
in target quadrant (TSTQ) in search of missing platform provided as 
an index of retrieval. Scopolamine treated rats showed remarkable 
decrease (p<0.001) (7.667±3.0 sec) in TSTQ when compared to 
normal (45.17±8.0 sec) and EA perse treated (43.83±6.2 sec) rats. 
In perse group of EA, there were no changes (p>0.05) during TSTQ 
when compared to normal group. Further, Donepezil administered 
rats improved (p<0.001) (46.17±5.3 sec) memory when compared 
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Plus Maze.
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Figure 4: Effect of Ellagic acid on Escape latency time of rats on 7th day to 
10th day using Morris Water Maze.
Values were mean ± SD, @ p<0.05 as compared to Normal & EA perse, 
# p<0.05 as compared to Scopolamine, * p<0.05 as compared to EA 25 + 
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to Scopolamine treated rats. EA (25 mg/kg, p.o.) administration 
showed remarkable increase (p<0.05) (19.50±1.517 sec) in TSTQ 
when compared to Scopolamine treated rats. EA (50 mg/kg, p.o.) 
administration indicated improvement (p<0.001) (32.00±8.1 sec) in 
memory function when compared with Scopolamine administered 
rats. Moreover, markedly difference (p<0.05) was also observed in 
between treatment doses of EA. Donepezil administered rats showed 
more significant improved memory when compared to EA 25 mg/kg, 
p.o. (p<0.01) and 50 mg/kg, p.o. administered rats (p<0.05) (Figure 
5).

Effect of Ellagic acid on rats in locomotor activity
On 6th day and 13th day of protocol schedule, locomotor activity 

was observed to rule out any interference in locomotion by treatment 
drug. Scopolamine employed rats did not reveal any significant changes 
(p>0.05) (281.333±15.3 and 274.833±5.3) in locomotor activity when 
compared to normal (263.833±17.4 and 274.5±21.3) and EA perse 
(270.666±18.2 and 274.5±4.7) rats. EA perse administration also did 
not show any considerable change (p>0.05) in locomotor activity at 
50 mg/kg, p.o. when compared to normal rats. Donepezil treated also 
showed insignificant changes (p>0.05) (267.5±21.3 and 274.833±5.3) 
when compared to Scopolamine and EA (25 or 50 mg/kg, p.o.) 
treated rats. EA 25 mg/kg, p.o. (266.833±15.4 and 270.833±20.6) and 
50 mg/kg, p.o. (274.5±4.764 and 283.5±16.208) administration did 
not showed any notable changes (p>0.05) in locomotor activity of rats 
when compared to Scopolamine treated rats, indicating there were no 
effect on locomotor activity (Figure 6).

Effect of Ellagic acid on acetylcholinesterase levels
Prolongation of availability of acetylcholine has been used to 

enhancing cholinergic function. This prolongation may be achieved 
by inhibiting AChE. Scopolamine administered rats significantly 
increased (p<0.001) (415.0±19.6) the AChE level when compared 
to normal (136.8±4.9) and EA perse (137.2±4.1) rats. EA perse 
administration did not show any appreciable changes (p>0.05) in 
AChE level at the dose of 50 mg/kg, p.o. when compared to normal rats. 
Donepezil treated rats appreciably decreased (p<0.001) (231.0±7.6) 
the AChE level in contrast to Scopolamine administered rats. EA (25 
mg/kg, p.o.) showed remarkably diminished (p<0.001) the AChE level 
(360.8±15.9) when compared to Scopolamine rats. Administration 
of EA (50 mg/kg, p.o.) significantly reduced (p<0.001) (311.7±17.6) 
the AChE level when compared to Scopolamine administered rats. 
Moreover, there were expressive distinction (p<0.001) was present 
in between treatment doses of EA. In Donepezil administered rats, 
AChE level was more significantly decreased when compared to EA 
25 mg/kg, p.o. (p<0.01) and 50 mg/kg, p.o. administered rats (p<0.01) 
(Figure 7).

Effect of Ellagic acid on malondialdehyde levels
MDA is an indicator of lipid peroxidation. Scopolamine 

administration increased (p<0.001) (42.50±3.0) the MDA level when 
compared to normal (19.88±0.9) and EA perse (19.15±1.8) rats. 
Further, EA perse administration did not show any considerable 
changes (p>0.05) in MDA levels when compared to normal rats. 
Donepezil appreciably decreased (p<0.001) (23.12±0.5) the MDA 
level when compared to Scopolamine administered rats. EA (25 
mg/kg, p.o.) administration showed remarkably decrease (p<0.001) 
(33.57±3.3) in MDA level when compared to Scopolamine 
administered rats. EA administered rats at the dose of 50 mg/kg, p.o 
significantly decreased (27.97±2.0) in MDA level when compared to 
Scopolamine (p<0.001) and EA 25 mg/kg, p.o. treated rats (p<0.05). 
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In Donepezil administered rats, MDA level was more significantly 
decreased when compared to EA 25 mg/kg, p.o. (p<0.01) and 50 mg/
kg, p.o. administered rats (p<0.05) (Figure 8).

Effect of Ellagic acid on reduced glutathione levels
Reduced GSH is a marker of cellular antioxidant and provide 

protection against oxidative stress. Scopolamine governed rats 
remarkably decreased (p<0.001) (2.067±0.4) the GSH level when 
compared to normal (9.833±0.7) and EA perse treated (9.733±0.7) 
rats. EA perse administration did not show any considerable changes 
(p>0.05) in GSH levels in contrast to normal rats. Donepezil 
significantly increase (p<0.001) (7.767±0.3) the GSH levels when 
compared to Scopolamine treated rats. EA (25 mg/kg, p.o.) 
administration exhibited remarkable increase (p<0.001) (5.250±0.5) 
in GSH level when compared to Scopolamine treated rats. EA (50 
mg/kg, p.o.) showed significantly increase (p<0.001) (6.317±0.3) in 
GSH level when compared to Scopolamine treated rats. Moreover, 
in between treatment doses of EA, there were significance difference 
(p<0.05) was present. In Donepezil administered rats, GSH level was 
more significantly increased when compared to EA 25 mg/kg, p.o. 
(p<0.01) and 50 mg/kg, p.o. administered rats (p<0.05) (Figure 9).

Effect of Ellagic acid on superoxide dismutase activity
SOD is an antioxidant enzyme, which plays a key role in detoxifying 

superoxide anions. Scopolamine administered rats significantly 
decreased (p<0.001) (27.33±3.3) the SOD levels in brain homogenate 
when compared to normal (100.0±0.0) and EA perse (95.83±2.6) 
rats. EA perse administration did not reveal any considerable change 
(p>0.05) in SOD activity when compared to normal rats. Donepezil 
expressively increase (p<0.001) (82.00±3.9) SOD activity when 

compared to Scopolamine treated rats. In treatment group, EA (25 
mg/kg, p.o.) administration showed remarkable increase (p<0.001) 
(59.17±8.0) in SOD activity when compared to Scopolamine treated 
rats. EA (50 mg/kg, p.o.) administration showed significantly increase 
(p<0.001) (71.33±4.0) in SOD activity when compared to Scopolamine 
treated rats and there were remarkably disparity (p<0.001) was found 
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in between EA treated groups. In Donepezil administered rats, SOD 
activity was more significantly increased when compared to EA 25 
mg/kg, p.o. (p<0.01) and 50 mg/kg, p.o. administered rats (p<0.05) 
(Figure 10).

Effect of Ellagic acid on catalase activity
Catalase is also an antioxidant enzyme which has capability to 

detoxify oxidative free radicals. Scopolamine treated rats manifested 
remarkable decrease (p<0.001) (36.50±4.4) in catalase activity in brain 
homogenate when compared to normal (100.0±0.0) and EA perse 
treated (95.50±1.8) rats. EA perse administration did not show any 
considerable changes (p>0.05) in catalase activity when compared to 
normal rats. Donepezil significantly increase (p<0.001) (81.67±4.0) in 
catalase activity when compared to Scopolamine treated (36.50±4.4) 
rats. EA (25 mg/kg, p.o.) remarkably increased (p<0.001) (59.17±4.5) 
the catalase activity when compared to Scopolamine treated 
rats. EA (50 mg/kg, p.o.) administration exhibited significantly 
increase (p<0.001) (73.67±3.5) in catalase activity when compared 
to Scopolamine and EA 25 mg/kg, p.o. treated rats. In Donepezil 
administered rats, catalase activity was more significantly increased 
when compared to EA 25 mg/kg, p.o. (p<0.01) and 50 mg/kg, p.o. 
administered rats (p<0.05) (Figure 11).

Discussion
Clinically AD is characterized by an insidious degradation of 

memory, associated with functional decline and neurobehavioral 
disturbances [83]. Despite the availability of various treatment 
strategies, the severity and prevalence of this disease are not yet 
under control. Therefore, alternative and complementary medicines 
including herbal supplements, phytochemicals and extracts are being 
utilized in the management of AD [84-87]. The current hypothesis 
about the mechanisms by which neurons come into necrotic or 

apoptotic processes has led to believe that the therapeutic use of 
natural antioxidants may be beneficial in aging and neurodegenerative 
disorders [88,89].

In the present study, the effect of improving memory deficit of EA 
was evaluated using scopolamine induced Alzheimer’s type dementia 
in rats.

Scopolamine induced Alzheimer’s type dementia model has 
been widely used to provide a pharmacological model of memory 
dysfunction for screening potential cognition enhancing agents 
[47,55]. The cognitive-enhancing activity of EA on scopolamine 
induced memory impairments in rats was investigated by using 
behavioral and biochemical parameters.

During elevated plus maze, decrease in retention latency indicated 
improvement of memory and vice versa [90]. In EPM, it was shown 
that long term injected scopolamine also drastically increase in TL, 
demonstrating that the central cholinergic neuronal system plays 
an important role in learning acquisition. EA dose-dependently 
decreased TL prolongation induced by scopolamine. These results 
suggested that the neuroprotective effect of EA on scopolamine-
induced memory impairment may be related to mediation of the 
cholinergic nervous system.

In order to confirm the effects of EA, MWM was used to test 
spatial learning in rats, where scopolamine treated rats were taking 
more time to reach at the hidden platform which shows memory 
impairments in this spatial task. EA treated rats impressively 
reduced the escape latency prolonged by scopolamine. Moreover, 
EA exhibited appreciable improvement of cognitive performance as 
indicated by significant decrease in ELT. It is important to notice that 
MWM test investigating spatial learning and memory has been used 
in detecting changes of the central cholinergic system [91,92]. If the 
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animals spent more time in target quadrant where the platform had 
previously been placed during the training session, this would indicate 
that the animals learned from prior experience with the MWM test, 
showing the spatial memory improvement. Scopolamine treated 
rats decreased TSTQ, on the other side EA treated rats expressively 
increased the TSTQ. Both the test doses viz., 25 mg/kg, p.o. and 50mg/
kg, p.o. significantly attenuated these behavioral changes in rats with 
scopolamine induced memory and cognitive impairment.

Along with EPM and MWM, Locomotor activity also was 
investigated using actophotometer to determine any modulation in 
locomotor activity by treatment drugs which may affect locomotion 
in EPM and MWM. However no significant difference in locomotor 
activity was observed in any of the animal groups. These results 
suggest that there was not any sedative effect or interference in EPM 
and MWM locomotion. Therefore, transfer latency in EPM, escape 
latency and TSTQ in MWM were purely result of improved memory. 
Therefore, EA can repair the long-term memory in scopolamine-
induced memory impairments.

To investigate the effect of EA on cholinergic function, that 
governs vital aspects of memory and other cognitive functions, brain 
acetylcholinesterase activity was measured in the present study. The 
hippocampus, amygdala and cortical regions of the brain are mainly 
involved in cholinergic transmission to monitor learning and memory 
processing and seem to be more prone to oxidative damage [93].

In this study, scopolamine was found to significantly elevate 
AChE activity, an enzyme responsible for degradation of Ach, which 
is in tune with earlier reports [58]. This increase in AChE activity was 
significantly restored dose dependently by EA. These observations 
suggest the modulation of cholinergic neurotransmission and/or 
prevention of cholinergic neuronal loss.

Recently, many studies have reported that memory impairments 
is associated to oxidative damage in the scopolamine-induced 
dementia in rats [55].

Lipid peroxidation is an important indicator of neurodegeneration 
of brain. Unlike other body membranes, neuronal membranes 
contain a very high percentage of long chain polyunsaturated fatty 
acids because they are used to construct complex structures needed 
for high rates of signal transfer. ROS are generated continuously in 
nervous tissues during normal metabolism and neuronal activity. 
The brain is subjected to free radical induced lipid peroxidation 
because it uses one-third of the inspired oxygen [94,95]. Lipids and 
proteins, the major structural and functional components of the cell 
membrane, are the target of oxidative modification by free radicals 
in neurodegenerative disorders [96]. Extensive evidence exists on 
lipid peroxidation and protein oxidation leading to loss of membrane 
integrity, an important factor in acceleration of aging and age-related 
neurodegenerative disorders. Oxidative stress has been implicated in 
the pathogenesis of AD in humans [97,98].

In the present study, scopolamine-injection in rats significantly 
induced peroxidation of lipids and proteins, and reduced antioxidant 
defense indicating increased oxidative stress. MDA is an end product 
of lipid peroxidation and is a measure of free radical generation 
and scopolamine injected rats showed extensive lipid peroxidation 
as evidenced by increase in MDA levels. In order to evaluate the 

effect of EA on lipid peroxidation in brain, MDA level was assessed. 
MDA level was remarkably increased by scopolamine and EA dose-
dependently reduced MDA level, indicating the reduced peroxidation 
of lipids.

Lipid peroxidation may enhance due to depletion of GSH content 
in the brain, which is often considered as the first line of defense of the 
cell by this endogenous antioxidant against oxidative stress [96,99]. 
Evidence has been presented that the neuronal defense against H2O2, 
which is the most toxic molecule to the brain, is mediated primarily 
by the glutathione system [100,101]. GSH is a tri-peptide, an 
endogenous antioxidant found in all animal cells in variable amounts 
and is a very accurate indicator of oxidative stress [102]. Consistent 
with previous studies, in present study, scopolamine treatment 
significantly decreased the GSH levels. Further, co-administration of 
EA markedly improved GSH levels.

The most important antioxidant enzymes are SOD and catalase. 
SOD plays a key role in detoxifying superoxide anions, which otherwise 
damages the cell membranes and macromolecules. Scopolamine 
administration showed a significant reduction in enzymatic activity 
of SOD and catalase. On the other side, Catalase has the capability 
to detoxify H2O2 radicals. Release of H2O2 promotes the formation of 
numerous other oxidant species that greatly contributes for oxidative 
stress leading to the pathogenesis of AD [103]. Scopolamine treatment 
was found to be decreased SOD and catalase activities. Treatment of 
rats with EA significantly preserved the activities of SOD and catalase.

The results of the present study suggest that chronic 
administration of EA perse did not have any significant effect on 
cognitive performance in normal animals. But, EA treatment groups 
at the dose of 25 & 50 mg/kg, p.o. showed marked improvement in 
cognitive tasks when compared to scopolamine treated rats suggesting 
the significant role of ACh in long lasting administrated scopolamine 
mediated cognitive dysfunction. Reports also support that ACh is 
involved in memory acquisition and retention [104,105]. Moreover, 
scopolamine injection drastically impaired memory retention, 
resembling Alzheimer’s dementia [50,55]. The same has been 
reported to be attenuated by pretreatment with herbal supplements 
and extracts, and phytochemicals [85,86].

The presented data in this study also suggests that EA possesses 
potent antioxidant activity by scavenging ROS and exerting 
a neuroprotective effect against oxidative damage induced by 
scopolamine. Predominant role of AChE inhibition, antioxidant 
activity reveal an important contributory factor to the beneficial effects 
of EA against dementia. Higher dose of Ellagic acid i.e. 50 mg/kg, p.o. 
was found more neuroprotective in all behavioral and biochemical 
evaluations. At lastly, the neuroprotective effects of EA might result 
from the regulation of AChE and the anti-oxidative defense system. 
These results suggest that EA can be used as a preventive herbal drug 
to impede cholinergic dysfunctions and oxidative stress in AD.

Conclusion
It was concluded that administration of scopolamine could 

cause Alzheimer’s type dementia via increase AChE levels and 
oxidative stress. Scopolamine mediated Alzheimer’s type dementia 
is mainly associated with cognitive and memory impairments in 
behavioral models. On the basis of this study, the major bio-markers 
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of Alzheimer’s disease like amyloid beta, inflammatory cytokines 
and histopathological changes can be further evaluated according to 
current protocol schedule to confirm and justify the strong evidence 
of Ellagic acid in long term injected scopolamine mediated dementia. 
Ellagic acid diminished the acetylcholinesterase level and improves 
the anti-oxidant defense system. Further, Ellagic acid downturned 
the cognitive impairments induced by scopolamine. Like Donepezil, 
Ellagic acid reversed the scopolamine induced Alzheimer’s type 
dementia in rats.
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