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Abstract
We are continually exposed to various visual stimuli in our contemporary 

society. Temporal frequency characteristics of the neural response to visual 
stimuli have been reported: Some temporal stimulation frequencies enhance 
neural responses and these frequencies are harmonically related, with a greatest 
common divisor frequency of approximately 6.5 Hz. Such stimuli, especially 
when high in temporal frequency, sometimes cause unexpected events such 
as photosensitive seizures. High-temporal-frequency visual stimuli can yield 
hazardous responses in the central nervous system. The mechanisms by which 
it does so have begun to be clarified using neuro imaging techniques such as 
magnetoencephalography. In addition, our knowledge about the relationship 
between the neural response to the high-temporal-frequency visual stimuli and 
fatigue in the central nervous system is increasing. Furthermore, the neural 
mechanisms to cause fatigue in the central nervous system by the visual stimuli 
has begun to be clarified. In this review, we describe the temporal frequency 
characteristics of the neural response to visual stimuli and the potential 
hazardous effects of high-temporal-frequency visual stimuli, particularly focused 
on the fatigue in the central nervous system.
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Introduction and Background
Recently, information technologies have come into common use. 

As a result, we are continually exposed to various visual stimuli. Such 
visual stimuli, especially when high in temporal frequency (> 3 Hz), 
sometimes result in unexpected events [1-4]: One of the most serious 
events is photosensitive seizures (PSS’s) caused by watching television 
broadcast materials or playing video games. In 1997, approximately 
700 young people were rushed to hospitals and treated for seizure 
symptoms in Japan. They were watching animated cartoon series, 
“Pocket Monsters”, on television [5-7]. The cartoon contained 12 Hz 
red/blue flicker images lasting for 4 seconds, and it was considered 
that watching these images induced the “Pocket Monster” incident. 
There have been similar incidents in which many young people in 
various countries caused neuropsychological abnormalities, including 
PSS’s, while watching television programs [8,9]. It is considered that 
the temporal frequency and brightness of visual stimuli are the two 
primary factors producing such events [8,10]. Such stimuli, especially 
when high in temporal frequency, sometimes cause unexpected 
events such as photosensitive seizures. High-temporal-frequency 
visual stimuli may yield hazardous responses in the central nervous 
system. The mechanisms by which it does so have begun to be clarified 
using neuro imaging techniques such as magnetoencephalography 
(MEG). In addition, the relationship between the neural response to 
the high-temporal-frequency visual stimuli and fatigue in the central 
nervous system as well as the neural mechanisms to cause fatigue in 
the central nervous system by the visual stimuli has been identified. In 
this review, we describe the temporal frequency characteristics of the 
neural response to visual stimuli and the potential hazardous effects 

of high-temporal-frequency visual stimuli, particularly focused on 
the fatigue in the central nervous system.

Analysis and Interpretation
Hazardous nature of light stimulation

It has been believed that stimulation frequencies between 15 and 
25 Hz can provoke seizure activity in the brain [9]. Broadcasting of 
high-temporal-frequency (> 3 Hz) strobe light is prohibited in some 
countries [11,12], although the scientific basis for this prohibition 
is still insufficient. Most of the patients with PSS’s are children or 
adolescents, and that few healthy adults are affected by the high-
temporal-frequency strobe light [8]. However, even in the healthy 
adult population, high-temporal-frequency visual stimulation 
can potentially cause abnormalities in the central nervous system 
functioning such as photo paroxysmal responses and occipital spikes 
[1-4].

Previous neuro imaging end electrophysiological studies

Studies using electroencephalography (EEG) showed that 
steady-state visual evoked responses were maximal when temporal 
stimulation frequency of visual stimuli was 3 - 8 Hz or 16 - 20 Hz 
[10,13]. Studies using magnetoencephalography (MEG), which has 
higher spatial resolution than EEG, were also performed [14-16]. 
Transient-type luminance contrast visual stimulation, which evoked 
neural responses in the area V5/MT, has been shown to be broadly 
tuned from 1 - 30 Hz [14], with steady-state luminance contrast 
stimulation eliciting peak magnetic responses in the area V1 at a 
temporal frequency of 8 Hz [15]; and steady-state chromatic contrast 
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visual stimuli elicited peak MEG responses at a temporal frequency of 
4 Hz [16]. In functional magnetic resonance imaging (fMRI) studies, 
flicker visual stimulation elicited peak blood oxygenation level-
dependent responses at a temporal frequency of 8 Hz [17,18]. In a 
positron emission tomography (PET) study, strobe light stimulation 
elicited peak regional cerebral blood flow in the visual cortex at a 
temporal frequency of 8 Hz [13,19]. These findings indicate that high-
temporal-frequency visual stimuli had effects on the central nervous 
system; however, the feature of the neural responses to visual stimuli 
across temporal frequencies has been inconsistent.

MEG study

It was attempted to clarify the temporal frequency characteristics 
of visual evoked magnetic fields (VEF’s) and the neural bases of the 
potential hazardous features of high-temporal-frequency strobe 
light stimuli in the central nervous system [20]. To specify these 
features and to clarify the mechanisms of photo-induced neural 
perturbations, it was essential to determine brain responses using 
MEG, in which neural responses can be examined with high temporal 
resolution in order not to miss characteristic neural responses across 
temporal visual stimulation frequencies and to use a transient-
type visual stimulation method rather than steady-state method in 
order neither to mask nor miss transitional neural activities. High-
temporal-frequency visual stimuli faster than 3 Hz were considered 
to be hazardous to the central nervous system [11,12,21] and red 
color is more likely to provoke PSS’s than blue or white color [22-24]. 
Therefore, transient-type red flashing strobe light stimuli between 
4 and 20 Hz with intervals of 2 Hz were used to obtain sufficient 
high-temporal-frequency resolution, and during visual stimuli, the 
neural response in the visual cortex with MEG was measured. As a 
result, the visual stimuli at the multiples of fundamental frequency 
(approximately 6.5 Hz) enhanced the magnetic responses. The 
mean values of the MEG responses for all the participants across 
the temporal stimulation frequencies did not exhibit significant 
frequency dependence. However, coefficient of variance curves of 
the MEG responses against the temporal stimulation frequencies 
demonstrated that there are some temporal frequency characteristics 
of VEF’s. These frequencies were harmonically related, and the 
fundamental frequency could be determined [20].

The existence of a fundamental frequency suggests the presence 
of a periodic system in the central nervous system. Every periodic 
system exhibits some degree of sympathetic vibration. The wind-
induced structural collapse of Tacoma Narrows Bridge in WA in 1940 
is a famous example of the hazardous nature of this type of vibration. 
Strobe light stimuli might thus affect a periodic system in the brain, 
and neuropsychological abnormalities might be manifestations of 
perturbations of such systems.

fMRI and PET studies

Peak blood oxygenation level in fMRI studies [17,18,25] and peak 
regional cerebral blood flow in PET studies [13,19] during strobe light 
visual stimuli were observed at a temporal frequency of 8 Hz. fMRI 
and PET are neuro imaging techniques that can measure activation of 
regional cerebral blood flow. It was reported that electrophysiological 
response and vascular response may be discrepant [26]. In this study, 
EEG and near-infrared spectroscopy, the former one depends on 

electrophysiological response and latter one depends on vascular 
response, were used and response magnitudes for flicker stimuli 
were compared. The electrophysiological response showed the 
discontinuous peak around the alpha frequency, however the vascular 
response showed broad peak around 8-9 Hz. It was considered that 
the neuronal networks encode information by synchronization 
of spontaneous oscillations. Therefore, the discrepancy in peak 
responses assessed using fMRI and PET on the one hand and MEG 
on the other might be caused through different aspects of neural and 
vascular responses; and we might just see two sides of the same coin.

Fatigue

Fatigue can be defined as difficulty in initiating or sustaining 
voluntary activities [27]. It is a common symptom; large community 
surveys have reported that up to half of the general adult population 
complains of fatigue [28,29]. Acute fatigue is a normal phenomenon 
that disappears after a period of rest; in contrast, chronic or long-term 
fatigue is sometimes irreversible and the compensation mechanisms 
that are useful in reducing acute fatigue are not effective [30]. Since 
fatigue induces a variety of diseases, it is of great importance to clarify 
the neural mechanisms underlying fatigue.

Fatigue and photosensitivity

Photosensitivity is thought to cause various signs of 
hypersensitivity to visual stimuli in the central nervous system, and 
hypersensitivity is believed to be related to fatigue [31]. Fatigue can 
exacerbate photosensitivity in child patients with photosensitive 
epilepsy [32,33] and in children with video game-induced seizures 
[34]. These indicate that fatigue is associated with photosensitivity. 
In addition, a relationship between fatigue and photosensitivity was 
demonstrated in patients with photosensitive epilepsy [32,33] and 
even in subjects with video game-induced seizures [34]. A relationship 
between fatigue and photosensitivity was also identified even among 
the healthy participants using a questionnaire [35]. The mechanism 
by which fatigue is associated with photosensitivity remains to 
be clarified; however, since sleep deprivation induces fatigue and 
hypersensitivity in the central nervous system causes excessive 
photosensitivity [31], one possible explanation for this association is 
that fatigue enhances photosensitivity by decreasing excitation in the 
central nervous system. Another possible explanation is that, since 
overwork induces fatigue, increased neuronal activity caused by the 
photosensitive state induces fatigue.

The relationship between fatigue and photosensitivity was also 
identified by using a neuro imaging technique [36]. Since various 
aspects of acute mental fatigue can be influenced by mental load, 
2-back test and 0-back test trials for a long period were used as acute 
mental fatigue-inducing tasks: the 0-back test represented a lower 
mental-load task, which could be performed without the use of 
working memory, while the 2-back test represented a higher mental-
load task, which requires the use of working memory [37]. During 
the visual stimuli, VEF’s could be observed and the VEF’s consisted 
of two phases, i.e., earlier Phase 1 and later Phase 2. Acute fatigue did 
not alter the VEF intensities in either of the two Phases. In addition, 
although the VEF intensities before the acute fatigue-inducing mental 
task sessions were not correlated with the chronic level of fatigue as 
evaluated using a questionnaire in either of the two Phases, the VEF 
intensities after the 0-back test trials for 30 min in Phase 1 and those 
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after the 2-back test trials in Phase 2 were significantly correlated with 
the chronic fatigue scale scores [36]. Visual-evoked electrical response 
is a function of the total number of cortical neurons responding to 
each stimulus presentation, with the greatest number of neurons 
responding to repetition rates matching the activity-recovery cycle 
duration of the pathway from retina to cortex [37]. Although acute or 
chronic fatigue alone did not alter VEF intensities, the chronic level of 
fatigue was positively correlated with VEF intensities after the acute 
mental fatigue load [36]. Chronic fatigue might be a fragile condition 
by acute fatigue load and the potential compensation mechanisms 
against acute fatigue insult might be impaired according to the level of 
chronic fatigue [38], and thus this impaired neural condition might be 
manifested as the activated response to visual stimuli. In contrast, the 
VEF intensities before the acute fatigue-inducing mental task sessions 
were not correlated with the chronic level of fatigue in either of the 
two Phases, because the VEF intensities was related to the fatigability 
rather than the fatigued condition. Both bottom-up and top down 
mechanisms such as altered sensory processing, malfunctioning of 
inhibitory mechanisms, increased activity of facilitation pathway and 
temporal summation of sensory stimuli or wind-up are considered 
to be associated with the hypersensitivity [39], and these might have 
a relationship with the mechanisms of the hypersensitivity for visual 
stimuli related to the chronic level of fatigue.

Types of fatigue and photosensitivity

Two different types of acute fatigue-inducing tasks affected VEF 
intensities in different magnetic temporal phases. It was reported that 
neural responses to visual stimuli were influenced by the alteration 
of the attention and arousal levels [40,41]. It was thought that visual 
information was firstly screened and inefficient information was 
suppressed, and secondly that efficient information passed through 
the screening process. The chronic level of fatigue was positively 
correlated with the VEF intensity in Phase 1 after the 0-back test 
session, which caused sleepiness [36]. Sleepiness is a type of request 
for rest in order to recover from fatigue [42] and sleepiness, i.e., low 
arousal level, might cause impaired screening function. On the other 
hand, the chronic level of fatigue was positively correlated with the 
VEF intensity in Phase 2 after the 2-back test session, which required 
working memory load [36]. The 2-back test trials might thus cause 
impaired function of information processing in the central nervous 
system. Chronic fatigue might make both sub cortical (arousal) and 
cortical (cognitive) systems fragile, and the 0-back test may mainly 
affect the sub cortical system and modify the VEF intensities in Phase 
1; while the 2-back test may mainly affect the cortical system and 
modify the VEF intensities in Phase 2. The different results indicate 
the complex relationships between photosensitivity and fatigue, and 
further studies would clarify the complicated neural mechanisms of 
photosensitivity and fatigue.

Limitations and future research direction

There are potential limitations to the previous studies. Participants 
were limited to healthy subjects. Thus, it is not certain that our results 
can apply to the patients with central nervous system disorders. 
Studies involving the patients with central nervous system disorders 
such as PSS would contribute to understanding of the neural bases 
of potentially hazardous high-temporal-frequency strobe light 
stimulation in the central nervous system.

Conclusion
In this review, we describe the temporal frequency characteristics 

of the neural response to the visual stimuli and the potential hazardous 
effects of high-temporal-frequency visual stimuli, particularly focused 
on the fatigue in the central nervous system. These findings would 
contribute to the better understanding of the basic periodic systems 
of human brain as well as the neural bases of response to visual stimuli 
in the central nervous system. In addition, these cast new lights on 
the high risk for fatigue in the central nervous system in our modern 
society, in which we are continually exposed to various visual stimuli 
day and night. Early interventions, such as use of a low-luminance 
environment and avoiding viewing of television monitors, for groups 
at a high risk of fatigue may contribute to a lower incidence of and/
or higher rates of recovery from fatigue in the central nervous system.
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