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Abstract
The heart as a contractile organ finely tunes mechanical parameters such as 

stroke volume, stroke pressure and cardiac output according to filling volumes, 
filling pressures via intrinsic and neuronal routes. At the cellular level, cardiac 
myocytes in beating hearts are exposed to large changes in mechanical stress 
during successive heart beats. Physical stimuli sensed by cells are transmitted 
through intracellular signal transduction pathways resulting in altered 
physiological responses or pathological conditions. Although the mechanisms 
of excitation-contraction coupling have been well established in mammalian 
heart cells, the putative contribution of mechanosensitive receptors, channels, 
signaling factors and force generation has been primarily investigated in relation 
to heart contraction, growth and leading to heart failure. We present an overview 
of the current literature and concepts of mechanical sensors residing within the 
plasma membrane, mechanosensitive receptors induced downstream signaling 
factors and their potential roles in cardiac contraction and growth.
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Introduction
About a century ago, Otto Frank in Germany and Ernest Starling 

in England reported on the relationship between the extent of 
ventricular filling and pump function of the heart, a phenomenon 
collectively referred to as Frank-Starling’s Law of the Heart [1]. 
Frank’s experiments employed the isolated frog heart and suggested 
that maximum ventricular pressure critically depends on whether 
the heart is operating under ejecting or isovolumic conditions. 
Frank-Starling’s Law describes how stretch of cardiac muscle, up to 
an optimum length, increases contractility thereby linking cardiac 
ejection to cardiac filling.

The role of mechanical force as an important regulator of 
structure and function of mammalian cells, tissues, and organs has 
recently been recognized. Physical stimuli must be sensed by cells and 
transmitted through intracellular signal transduction pathways to 
effect or molecules and organelles, resulting in altered physiological 
responses or pathological conditions. In this research field, significant 
progress has recently been achieved, especially from studies of 
cardiovascular systems [2-12].

Cells adhere to the extracellular matrix (ECM) and to each other 
through specific classes of Tran’s membrane adhesion receptors [13-
15]. These receptors bind to extracellular ligands and provide an 
anchor to the intracellular cytoskeleton via cytoplasmic scaffolding 
proteins [16,17]. Linkages between external cellular contacts, adhesion 
receptors, and cytoskeleton provide a means for bidirectional 
communication between the inside and outside of a cell. Dynamic 
changes in adhesions, matrix mechanics and cytoskeletal systems 
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may thus play a critical role in regulating mechanotransduction [18].

The cellular response to mechanical forces is inherently coupled 
to the internal organization of the cytoskeleton and adhesion 
to surrounding cells and the ECM [19]. Structural cues such as 
anisotropy or topography of the ECM or location of cell-to-cell 
contact can cause a cell to reorient its body, change its shape, or alter its 
functional state [20-22]. Similarly, changes in the shape and internal 
organization of cells alter how cells adhere to their surroundings 
and affect their function [23-25]. Application or removal of a gross 
external load from a cell causes the cell to actively adapt its adhesions 
and cytoskeleton and transduce the altered mechanical environment 
into biochemical signals [26]. Mechanochemical signal transduction 
originates at the cell membrane, and several candidate sensor 
molecules have been postulated, including ion channels, tyrosine 
kinase receptors, G-proteins, enzymes, integrins, and proteins 
from the cytoskeleton [27]. Besides the common mechanosensing 
mechanisms shared by various cell types cardiac muscle has intricate 
intrinsic mechanisms that regulate adaptive remodeling. Z disks and 
titin filaments generate a complicated mechanical sensor system 
to receive and transduce stretch signals [28]. Some cardiac specific 
molecules such as muscle-enriched LIM domain proteins, specialized 
protein structural domains composed of two contiguous zinc finger 
domains, separated by a two-amino acid residue hydrophobic linker. 
PDZ-LIM domain proteins, myozenin gene family members, titin-
associated ankyrin repeat family proteins, and muscle-specific ring 
finger proteins are attributable to this sensing mechanism [28]. The 
compartmentalization of signaling complexes permits alteration of 
receptor-dependent transcriptional regulation by direct sensing of 
mechanical stress. Other muscle-specific membrane systems such 
costumers [29], intercalated disks [30], and caveolae-like micro 
domains [31,32] are also recently identified mechanical stress sensors. 
In the past decade it has become apparent that mechanosensing 
within the cardiac myocyte is a multifaceted, dynamic and complex 
process (see Figure 1) that involves a coordinated interaction among 
plasma membrane mechanoreceptors, stretch-activated channels, 
downstream signaling factors, cytoskeletal elements, nucleoskeletal 
proteins that serve to regulate cellular functions such as gene 
expression, sarcomeric contraction, growth and metabolism.

However, the mechanisms by which cells transmit mechanical 
stress throughout the cytoplasm and the cytoskeleton and by which 
signals are sensed and converted into biochemical signals, are still 
not understood. The aim of the current review is to provide an 
update on the progress involved in the mechanisms downstream 
signal pathways of mechanoreceptor activation linking to contractile 
function of cardio myocytes in response to mechanical stresses. The 
new insights would be helpful for exploring new therapeutic targets 
to prevent and treat the mechanical stress-initiated diseases, such as 
heart failure (HF).

Mechanical Sensors
Mechanical stretch could lead to changed conformation of 

membrane proteins to unfold hidden domains of proteins providing a 
binding site to downstream substrates that initiate the signals (shown 
in Figure 1), thus these receptors play important roles as mechanical 
sensors. Below, we discuss the role of major mechanical sensors, 
including integrins, angiotensin type II (AT1) receptor (AT1R), 

stretch-activated channels, transient receptor potential channels 
(TRPCs) and the apelin receptor in the regulation of cardiac function.

Plasma Membrane Mechanical Sensors
Angiotensin II type 1 receptors (AT1R)

The AT1R is a member of the G protein-coupled receptor (GPCR) 
family, which binds angiotensin II (Ang II) and elicits intracellular 
effects. Although AT1R signaling has been well studied during the last 
20 years, novel aspects remain to be uncovered as suggested by the 
recent discovery of biased ligands of AT1R, which can be activated by 
mechanical stress through an Ang II-independent mechanism [33-
37]. It is well recognized that AT1R, the first mechanosensitive GPCR 
discovered, mediates transformation of mechanical stimuli into 
biochemical information and gives rise to a variety of mechanosensor-
induced cellular responses (such as inflammation, cell growth, and 
differentiation etc.) [33,38]. Inverse agonists, such as can desartan, 
which stabilize the AT1Rin an inactive conformation, suppress 
AT1R activation by both mechanical stress and Ang II [39]. Recent 
studies suggest that mechanical stretch induces β-arrestin−biased 
signaling downstream of AT1R in the absence of ligand or G protein 
activation [40]. Mechanical stretch triggered AT1R receptors mediate 
conformational changes in β-arrestin, similar to that induced by a 
β-arrestin-biased ligand, to selectively stimulate receptor signaling 
in the absence of detectable G protein activation [34,39-41]. Yatabe 
et al., demonstrated that mechanical stress caused an increase in the 
phosphorylation levels of extracellular-regulated kinase (ERK) in rat 
mesangial cells through the Ang II-independent AT1R activation [35]. 
The angiotensin receptor blocker olmesartan was found to attenuate 
ERK activation via mechanical stress. Several studies have reported 
that under mechanical stretch the concentrations of secreted Ang II 
and the levels of angiotensinogen expression were unchanged [42-
44]. Although AT1R has been shown to couple to signaling pathways 
that regulate intracellular Ca2+, a potential role of AT1R in mediating 
stretch-induced changes in cardiac myocyte contractility remains to 
be explored.

Integrins

Integrins are hetero dimeric Tran’s membrane proteins comprised 
of non covalent interactions between α and β subunits that serve 
as major molecular links between cells and the ECM. Extracellular 
domains of the α subunits participate in adhesion and ligand 
recognition, and upon activation, the short cytoplasmic domains 
of β subunits, which lack kinase function, physically connect to the 
cytoskeleton and recruit proteins for signaling [14,15,45,46]. A given 
α-subunit may interact with more than one β-subunit, resulting in 24 
different hetero dimers identified to date. Cardiac myocytes express 
a limited set of integrin subunits, which include α1, α3, α4, α6, α7, α10 
and α11, β1, β3 and β5 [47-51]. The specificity of integrin signaling is 
made possible by α and β-subunits that form the hetero dimeric pair. 
The α-subunit generally confers ECM specificity [46,52], whereas 
the β-subunit interacts with the cytoplasmic environment. Ligand 
binding to the extracellular integrin domain induces conformational 
changes and integrin clustering for activation of signaling cascades 
and recruitment of multi protein complexes to focal adhesions 
[53,54]. Although the cardiac ECM was long believed to function 
as an inert scaffold for myocytes, studies in the last decade indicate 
that it is a dynamic and metabolically active component which 



Austin J Clin Med 1(3): id1015 (2014)  - Page - 03

Dostal DE Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

plays important roles in both normal and the progression of heart 
failure. Remodeling of the ECM, as a result of cardiac development 
[55], cardiac injury or pathological increases mechanical load [56], 
alters activation of integrin sub types [57] and thus cardiac function. 
Because of the importance of ECM in force transduction, regulation 
of integrins and intercellular communication within the myocardial 
microenvironment, it has become increasingly evident for a need to 
develop therapies that can restore normal function to the injured 
and/or deregulated ECM.

Because integrins lack enzymatic activity, activation of signaling 
factors requires interaction with cellular proteins that have kinase 
activity. In non-cardiac cells, the cytoplasmic tail of the β-subunit 
has been shown to directly bind to several cytoskeletal proteins 
that associate with signaling molecules [58]. In cultured neonatal 
rat cardiac myocytes, β1 integrin has been shown to be important 
for coupling mechanical stretch to activation of mitogen activated 
protein kinases (MAPKs), as well as focal adhesion kinase (FAK) 
and Rho GTPases [59-61]. Angiotensin II (Ang II) and other 
growth factors stimulate cardiac myocyte contraction and adhesion 
via β1 and αvβ3 integrins, which involve inside-to-outside signaling 

mechanisms [47,49-51]. Ang II also orchestrates adhesion through 
up regulation of various integrins (αv,β1,β3,β5), as well as expression of 
cytoskeletal protein, such as α-actinin, which is intimately connected 
to integrins at the site of focal adhesions [51]. However, the role of 
integrins in the regulation of cardiac myocyte contraction remains 
to be systematically studied under both physiologic and pathologic 
conditions. Inactivation of ILK has been shown to lead to HF in 
zebra fish [62] by reducing protein kinase B (PKB/Akt), suggesting 
the importance of integrins mechanosensing in mediating cardiac 
contractility. In non-cardiac tissues, physiological stretch has been 
shown to regulate contractility primarily through integrins that 
couple to FAK activation [63]. It is therefore possible that FAK 
coupled integrins, such as β1 integrin could also regulate contractile 
force in cardiac myocytes. These studies imply that integrins could 
serve as novel therapeutic targets for treating patients with contractile 
dysfunction.

Stretch-activated channels (SACs)

Stretch-activated channels (SACs), initially identified in the 
mammalian myocardium by Craelius et al. [64], and are ion channels 
activated by mechanical stretch, rather than the more common 
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Figure1: Regulation of cardiac myocyte contraction through activation of stretch-induced mechanosensing pathways.
This diagram depicts how mechanical activation of mechanosensors may regulate cardiac myocyte contraction. Stretch-induced activation of integrins, AT1R, SACs 
and the apelin receptor, results in the activation of several different downstream signaling cascades that include focal adhesion kinase proteins, MAPKs, Akt, and 
Rho GTPases, as well as phosphatases PP1 and PP2A, which could affect cardiac myocyte contraction and relaxation by regulating the phosphorylation levels 
of proteins involved in calcium regulation. Although calcium regulatory proteins such as phospholamban, the L-type calcium channel, and the ryanodine receptors 
are documented targets of these signaling cascades, sarcomeric proteins may also be regulated by mechanical stretch mechanisms. In addition, mechanosensing 
feedback from the Z-disc of the sarcomere may serve to “fine-tune” muscle contraction. Abbreviations: AT1R: Angiotensin II type 1 receptor; APJ: apelin receptor; 
β-Arr-2: beta-arrestin-2; FAK: focal adhesion kinase; GRK: G-protein coupled receptor kinase; ILK: integrin-linked kinase; JNK: c-jun N-terminal kinase; JIP: 
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voltage or ligand gating mechanisms. Activation of mechanosensitive 
ion channels has been proposed as the transduction mechanism 
between mechanical stress and cardiac hypertrophy [65]. For a 
comprehensive review of the role of mechanosensitive ion channels in 
the normal and pathological heart, see Takahashi et al. [66]. The SACs 
allow passage of ions like Na+, K+ and Ca2+ [67]. Stretch of cultured 
cardiac myocytes increased intracellular Ca2+levels most probably via 
activation of SACs, since this increase was blocked by pre-incubation 
of the SAC blockers streptomycin and gadolinium ions [68-70]. 
However, literature dealing with the role of SACs in mediating 
stretch-induced increases in intracellular Ca2+ is conflicting. Direct 
Ca2+influx through stretch-activated channels have been reported in 
mechanically stimulated chick cardiac myocytes [71]. In contrast, no 
stretch-induced change in diastolic intracellular Ca2+ was observed in 
fura-2 loaded rat ventricular myocytes [72], suggesting that species 
differences may exist with regard to Ca2+ regulation by SAC. It is also 
possible that SACs may increase intracellular Ca2+ locally, such as in 
the restricted sub-sarcolemmal “fuzzy space”, where it is difficult to 
detect changes in Ca2+ using standard monitoring methods. Thus, 
the role of SACs in regulation of Ca2+homeostasis and contraction 
in cardiac myocytes remains to be thoroughly investigated using 
advanced technologies such as “optical patch-clamp” recording, 
which provides simultaneous imaging of channels with millisecond 
resolution of gating kinetics together with sub-micron spatial 
resolution of channel locations [73].

Transient receptor potential channels

Transient receptor potential channels (TRPC) are expressed in 
the heart [74] and multiple laboratories have shown that activity of 
TRPCs is up regulated in pathological hypertrophy and HF [75-78]. 
The TRPC family includes 7 isoforms (TRPC1to 7) that have been 
divided into 2 general subfamilies based on structural and functional 
similarities: TRPC1/4/5 and TRPC3/6/7. TRPC2 is not expressed 
in humans [79]. TRPC channels are preferentially localized to the 
peripheral plasma membrane in cardiac myocytes [76,80]. In rat 
ventricular myocytes, TRPC3 also localizes to intercalated disks and 
to the transverse-axial tubular system, where it interacts with the NCX 
and the Na+/K+ ATPase [81]. There is evidence to suggest that TRPC 
channels are able to sense and transduce mechanical stress. In cardiac 
myocytes, TRPC1 has been suggested to sense mechanical stretch 
due to the ability of the stretch inhibitor tarantula toxin GsMTx4 to 
block angiotensin II-induced Ca2+ oscillations in wild-type, but not 
TRPC1 knockout mice [75]. In addition TRPC6 is activated by stretch 
in the presence of PLC inhibitors [82]. Consistent with this report is 
the finding that cardiac-specific TRPC6 TG mice are more sensitive 
to pressure overload and agonist-induced cardiac hypertrophy 
accompanied by decreased systolic function [76]. However, it 
remains to be determined whether these effects are mediated through 
mechanical stretch or indirectly through receptor activation, such as 
the AT1, which also couples to TRPC receptors.

Apelin receptor

The apelin receptor (APJ) is a G-protein-coupled receptor for 
apelin, an endogenous ligand [83] and present in various body organs 
such as the heart, liver, and brain [84]. APJ is believed to act as a dual 
receptor in cardiac hypertrophy, specifically for mechanical stretch 
and for an endogenous peptide apelin. When activated by stretch, 

the mechanosensor signaling component of APJ induces an increase 
in cardiac myocyte cell size [85]. Recent studies indicate that APJ 
functions as a bimodal switch, which can bias disease progression 
towards adaptation or failure, depending on whether it is stimulated 
by apelin or mechanical stretch. In pressure-overloaded mice, APJ has 
been shown to play a key role in maintaining cardiac contractility [86], 
whereas apelin-knockout mice have impaired cardiac contractility 
[85]. Regulation of cardiac contractility by APJ involves parallel and 
independent activation of PKCε and ERK signaling mechanisms 
by apelin [87]. APJ activation by stretch is G-protein independent 
and stretch interferes with apelin-mediated G-protein activation by 
APJ, which can cause cardiac hypertrophy. APJ can be considered as 
a drug target because APJ triggered by stretch can be pathological. 
A beneficial effect can be achieved by selectively inhibiting APJ 
to respond to mechanical stretch or by blocking interaction with 
molecules that trigger pathological signaling cascades. However, 
even if the APJ receptor becomes activated by stretch, administering 
doses of apelin or knocking-down beta-arrestins could also minimize 
stretch-mediated hypertrophy [85]. The roles of APJ in regulation 
of cardiac myocytes contraction need to be determined, including 
determination of APJ phosphorylation sites, downstream signaling 
pathways and cross-talk with other stretch receptors.

Nuclear mechanosensing

Studies in the past decade suggest that the nucleus itself may 
act as a cellular mechanosensor to directly modulate expression 
of mechanosensitive genes [88]. The nucleus is tightly integrated 
into the structural network of the cell through LINC (linker of the 
nucleoskeleton and cytoskeleton) complexes which transmit forces 
between the nucleus and the cytoskeleton [89]. Lamins, a type V 
nuclear intermediate filament that contribute to the nuclear lamina 
an extended part of the LINC complex, play a central role in this 
mechanosensory process. Lamins can be separated into A-type and 
B-type lamins, with lamins A and C as the major A-type isoforms, 
and lamins B1 and B2 being the major B-type isoforms in somatic 
cells [90]. Lamins A and C provide structural support to the 
nucleus  [91] and  play a major role in physically connecting the 
nucleus to the cytoskeleton, thereby enabling forces to be transmitted 
from the cytoskeleton and extracellular matrix to the nuclear interior. 
Lamins A and C are important contributors to the mechanical 
stiffness of nuclei, whereas lamin B1 contributes to nuclear integrity 
but not stiffness. Cells lacking lamins A and C have reduced nuclear 
stiffness and increased nuclear fragility, leading to increased cell 
death under mechanical strain. Mutations in laminas A and C result 
in a variety of severe diseases, including dilated cardiomyopathy, 
which further indicates the critical role of these nuclear, envelop 
proteins in maintaining normal cellular function. Recent studies 
have provided some insight into how the nuclear lamina responds 
to force-induced nuclear deformation and couples to biochemical 
responses [92-96]. Results from these studies suggest that cells adapt 
the expression and organization of the lamina network according to 
the mechanical environment, in which cells have high expression 
levels of laminas A and C and decreased phosphorylation of the 
lamina-A filamentous coil-coil assembly in a mechanically stressed 
tissue, such as cardiac tissue. However, it remains to be determined 
whether these changes reflect the role of laminas as mechanosensors 
or if transcriptional regulation of laminas is downstream of other 
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mechanosensing pathways. Several other key questions remain to 
be addressed regarding the role of the nuclear envelop proteins in 
cellular mechanotransduction in cardiac and other tissue types. 
Issues that remain to be addressed include the role of nuclear envelop 
proteins in cellular mechanotransduction; whether these proteins are 
mechanosensors or merely serve as processing hubs; how the nuclear 
mechanosensing system is integrated with signaling originating from 
the plasma membrane and sarcomere in cardiac myocytes and finally, 
what role does this system play during adaptive and maladaptive 
stages of pressure-overload induced HF.

Z-Disc mechanosensing
In addition to localized mechanical transduction in which the 

extracellular signal is generated in close proximity to the plasma 
membrane, studies have provided evidence for additional types of 
mechanosensing, which originate at the contractile protein level [97]. 
Because the primary function of cardiac muscle is to generate force 
through sarcomeric actin-myosin interactions, there is a necessity for 
these forces to be fine-tuned and dynamically regulated on a beat-
to-beat basis. In addition to perceiving the presence of extracellular 
stimuli, regulation at the sarcomeric level would provide an extra level 
of regulation by sensing the magnitude and dynamics of contractility 
during the cardiac cycle. The primary locations for these regulatory 
components are unknown, but may involve structures including the 
z-disc, titan and non-sarcomeric proteins, such as desmin.

The z-discs (z-lines, z-bands) are the lateral boundaries of the 
basal contractile unit of the myocyte, the sarcomere. Three of the four 
filament systems of the sarcomere, filamentous F-actin, titin, and 
nebulin/nebulette, interact with z-disc structures, only the myosin-
based thick filaments do not directly interact with the z-disc [98]. The 
z-discs of individual sarcomeres are aligned in parallel and connected 
by the intermediate filament desmin, thereby providing a link to 
the intermediate filaments. In addition, costameres, which consist 
of peripheral z-disc and sub sarcolemmal proteins, ensure force 
transmission from the sarcomere to the sarcolemma.

Titin

Titin is an extensive, highly elastic protein that spans Z-discs and 
M-bands within sarcomeres and is closely associated with both thick 
and thin filaments [99-101]. Due to its elasticity, titin functions as a 
molecular spring that supports sarcomere recoiling after systole [102]. 
Titin’s I-band region contains three extensible elements, serially-
linked immunoglobulin (Ig)-like domains, the PEVK element, and 
the N2B element. Changes in titin’s I-band region, namely isoform 
splicing and posttranslational modifications, directly influence titin-
based passive tension.

Cyclic AMP (cAMP)-dependent protein kinase A (PKA) 
is activated by β adrenergic stimulation and has been shown to 
phosphorylate the unique sequence of the cardiac specific N2B 
element (N2B-Us). Phosphorylation by PKA reduced passive 
tension in skinned rat cardiomyocytes [103] and human cardiac 
fibers [104]. The effect in human fibers was more pronounced 
when de-phosphorylation by protein phosphatase-1 (PP1) was 
performed before PKA treatment, which suggests that basal levels of 
phosphorylation play an important role in determining titin-based 
passive tension.

Protein kinase G (PKG), which is cGMP-dependent, also 
phosphorylates the N2B-Us and reduces passive tension, and the 
site of phosphorylation is the same residue that PKA targets [105]. 
Passive tension of skinned fiber bundles from human left ventricle 
(LV) was significantly reduced only after PP1 treatment removed 
basal phosphorylation levels, which, similar to the PKA results, 
suggests that basal levels of titin posttranslational modifications play 
important roles in vivo. A single molecule study on N2B-Us treated 
with PKG suggested that phosphorylation increases the persistence 
length of the molecule of the N2B-Us [105], which corresponds to a 
reduction of passive tension at the tissue level.

 Most recently, it has been shown that protein kinase C (PKC) 
specifically phosphorylates titin at two highly- conserved serine 
residues in the constitutive PEVK element found in all cardiac titin 
isoforms [106]. PEVK phosphorylation by PKCα  (the predominant 
isozyme in the heart and an important player in contractile dysfunction 
and heart failure [107,108]), increases titin-based passive tension, an 
effect that is also exacerbated by PP1 pre-treatment. Following PKCα 
phosphorylation, PP1 treatment reversed the passive tension increase 
[106], which suggests that PKCα phosphorylation directly influences 
titin stiffness.

In addition to its mechanical role, titin also regulates gene 
expression by interacting with a wide variety of molecules involved 
in many different signaling pathways [109,110]. Because titin is 
mechanically deformable, active in signaling, and directly linked 
to sarcomeric elements, it is uniquely equipped to serve as a 
mechanosensor sensitive to sarcomere length and intracellular strains 
with control over mechanotransduction. Several mechanisms have 
been proposed to explain how titin functions as a mechanosensor 
[110,111]. For example, muscle ankyrin repeat proteins (MARPs) 
are activated for signaling and nuclear regulation of transcription 
after binding between specific domains of the titin molecule in 
the elastic I-band region [112]. Titin-MARP binding is enhanced 
when myocytes are stretched, suggesting that intracellular strain 
extends titin and allows the MARP binding site to become more 
accessible [112]. Additionally, four-and-a-half-LIM-domain (FHL) 
proteins, which activate transcription and signaling [110], also bind 
to the elastic I-band region of titin and are thought to play a role in 
mechanosensing [113,114]. Studies have shown that deleting specific 
I-band domains causes increased strain and loss of elasticity within 
titin, which is associated with up regulation of FHL protein levels and 
hypertrophy [115]. These examples demonstrate how the elasticity of 
titin allows it to function as an intracellular stress sensor by exposing 
or hiding different binding domains for signaling molecules based on 
the level of tension applied to the molecule.

Desmin

Desmin is the major intermediate filament in cardiac muscle, 
accounting for ~2% of cardiac protein content. It mechanically 
links the z-discs to the costameres [116]. Desmin is characterized by 
numerous protein-protein interactions ensuring cellular integrity, 
force transmission, and biomechanical signaling [117]. Given this 
crucial localization, it is not surprising that desmin knock-out mice 
develop a multisystem disorder involving cardiac, skeletal, and smooth 
muscle, with the most prominent pathological processes appearing 
in the heart, displaying severe cardiomyopathy accompanied by 
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extensive fibrosis and calcification [118]. Consistently, up to now, at 
least 45 mutations in the desmin gene have been identified that lead to 
a skeletal and cardiac myopathy termed desminopathy [117]. The role 
of desmin in regulation of contraction in cardiac myocytes remains 
to be investigated.

Myosin II

Myosins constitute a super family of motor proteins that play 
important parts in several cellular processes that require force and 
translocation. Most myosins belong to class II and, together with 
action, make up the major contractile proteins of cardiac, skeletal 
and smooth muscle. Myosin II molecules are present in all non-
muscle eukaryotic cells [119]. Recently, non-muscle myosin II 
was demonstrated as important mechanical sensor in cytokinesis 
process [120-122]. The stereotypical shape changes of successful 
cytokinesis occurs through an integrated system of three modules, 
cell mechanics, myosin II-mediated contractile stress generation 
and sensing, and a control system of regulatory proteins, which 
together ensure flexibility and robustness [123]. In early cytokinesis, 
mechanical load accumulates contractile proteins myosin II and 
cortexillin I to correct shape asymmetries [120]. Myosin II and 
cortexillin I interact to form a cellular-scale mechanosensor, which 
is an exquisitely tuned molecular system that requires fully myosin 
II and cortexillin I function to monitor and to correct shape defects, 
ensuring symmetrical cell division [124,125]. Further research 
elucidates that the regulatory and contractility network composed 
of myosin II, cortexillin I, IQGAP2, kinesin-6 (KIF12), and inner 
Centromere protein (INCENP) is a mechanical stress-responsive 
system. Myosin II and cortexillin I form the core mechanosensor, 
and mechanotransduction is mediated by IQGAP2 to KIF12 and 
INCENP [126].

Mechanical forces direct a host of cellular and tissue processes. 
Although much emphasis about mechanosensing has been placed on 
cell-adhesion complexes, it should be point out that the forces are 
transmitted through the cortical cytoskeleton. Myosin II and different 
actin cross-linkers are accounted for cortical mechanosensing in 
different types of mechanical stress. Myosin and alpha-actinin 
respond primarily to dilation, whereas filamin responds to shear 
stress [125].

Although these myosins are referred to as ‘non-muscle’ myosin 
IIs to distinguish them from their muscle counterparts, these are also 
present in striated muscle, where they have distinct functions during 
skeletal muscle development and differentiation [127], as well as in 
the maintenance of tension in smooth muscle [128,129]. Given those 
exciting findings on non-muscle myosin II as mechanical sensor in 
various cellular processes, it would be interesting to determine the 
mechanosensing role of myosin II in cardiac mechanosensing and 
effects on muscle contraction.

Signaling Factors
Mechanical sensors can be activated by mechanical stretch 

leading to activation of multiple classic signaling pathways involving 
in alterations of a large number of signaling molecules, e.g. focal 
adhesion kinase, Rho family GTPases, Integrin-linked kinases, MAP 
kinases and Akt. These activated signaling pathways (Figure 1) use 
their own classic signaling pathways to regulate heart functions.

Focal adhesion kinase (FAK)
FAK is a tyrosine-phosphorylated protein that localizes to 

integrin-enriched cell adhesion sites [130,131]. FAK directly binds 
to the cytoplasmic tail of β-integrin and thereby plays a major role 
in integrin-mediated signaling [29]. Although FAK is an essential 
kinase, as indicated by the fact that null mice are embryonically 
lethal, the function of FAK in the heart has been controversial. Several 
groups advocate the cardio protective nature of FAK [132,133], while 
others disagree [134,135]. A number of exciting new animal models 
have now clearly established a role for FAK in the development of 
the cardiovascular system and possibly in heart disease. At the 
cellular level, FAK controls cell migration, proliferation and survival 
[132,136]. FAK is involved in proliferation processes and extracellular 
mechanical signaling in the heart, and is highly expressed the 
myocardium. Recent studies indicate that FAK is important for 
transducing mechanical stimuli in isolated cardiac myocytes, 
fibroblasts and in mechanically overloaded myocardium [59,132]. In 
cardiac myocytes, mechanical stretch induces FAK phosphorylation 
at Tyr397, Tyr861 and Tyr925 [59], which yet remain to be shown to play 
a role in the regulation of cardiac myocyte contractile function.

Rho family GTPases
Mechanical stretch activates the Rho GTPases, Rac1 and Rho 

A, which participate in focal adhesion formation and activation of 
growth pathways. Integrins are involved in the regulation of the 
activities of several members of the Rho family of small GTPases, 
which control the growth or contraction of filamentous actin fibers 
and myosin [137]. Several tyrosine kinase members, such as the Src 
family, are also involved in the transduction of signals from integrin 
to Rho GTPases. Previously, it has been reported that Src, either alone 
or in association with other classes of tyrosine kinases, has the ability 
to regulate the Rho GTPase activation cycle by modulating guanine-
exchange factor and GTPase activating protein [138]. In addition, 
experiments utilizing cardiac fibroblasts isolated from neonatal rat 
hearts treated with dominant-negative Rac1 or Rho A adenoviruses 
and subjected to mechanical stretch revealed an activating role for 
Rac1 and an inhibitory role for RhoA in FAK activation that resulted 
in Akt473 phosphorylation [61]. In contrast to Rac1, previous studies 
suggest that RhoA is a mediator of hypertrophic responses in the 
myocardium [139,140]. Inhibition of the RhoA affecter ROCK, 
using the ROCK inhibitor GSK 576371, prevented left ventricular 
hypertrophy and reduced collagen deposition, which were 
accompanied by improved diastolic function in pressure overload-
induced cardiac hypertrophy in the rat [141]. There is evidence that 
RhoA can regulate both influx of Ca2+ at the plasma membrane and 
sarcoplasmic reticulum (SR) uptake in cardiac myocytes. Ventricular 
myocytes obtained from transgenic mice expressing dominant-
negative RhoA demonstrate a substantial decrease in the density of 
L-type Ca2+ channel current [142]. This effect appeared to be due 
to a direct effect on the channel, as there were no changes in the 
expression of L-type Ca2+ channel mRNA or density of channels 
on the plasma membrane. RhoA-kinase signaling has been shown 
regulate intracellular Ca2+ stores in neonatal rat cardiac myocytes, in 
which pharmacologic inhibition of Rho-kinase induced expression 
of SERCA2a mRNA [143]. Although there is no evidence that Rac1 
can regulate the L-type Ca2+ current in cardiac myocytes [142], the 
Rac1/Pak1 signaling pathway has been shown to be a major regulator 
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of protein phosphatase 2A (PP2A), which can dephosphorylate both 
the L-type Ca2+ channel and ryanodine receptor [144,145]. However, 
future studies remain to be performed to unravel the mechanisms by 
which these Rho GTPases precisely regulate intracellular Ca2+ and 
contractility in the myocardium.

Integrin-linked kinase (ILK)
ILK is a widely expressed serine/threonine kinase that binds the 

C terminus of β1-integrin [146]. ILK links ECM matrix interactions 
to cellular processes such as remodeling of cytoskeletal proteins, 
growth, proliferation, survival, and differentiation [147]. It binds 
α-actinin via β-parvin/affixin and forms a complex with PINCH and 
thymosin β4 [147]. It has been shown to phosphorylate MLC, GSK-
3β (glycogen synthase kinase-3β), and Akt/PKB [148]. Several genetic 
loss-of-function studies in flies, worms, and mice have revealed 
embryonic death due to cell adhesion and cytoskeletal defects 
[147]. The conditional cardiac knock-out in mice leads to dilated 
cardiomyopathy (DCM) and sudden cardiac death [149]. Bendig et al. 
applied a forward genetic screen in zebra fish and identified an L308P 
mutation in the zILK gene causing progressive loss of contractility in 
zebra fish hearts [150]. This mutation disrupted the interaction with 
β-parvin/affixin, suggesting that its presence is essential for normal 
cardiac function and potentially cardiac stress sensing [150]. Likewise, 
in another zebra fish study, a nonsense mutation (Y319X) led to a 
dysmorphic ventricle with reduced cardiac function combined with 
severe endothelial defects, similar to alterations observed in mice 
lacking the integrin-binding ECM protein laminin α4[151]. Cardiac-
restricted over expression of ILK induces cardiac hypertrophy via 
activation of ERK and p38 MAPK, hence suggesting ILK to be a 
proximal pro-hypertrophic signaling activator [152]. The role of 
ILK in regulation on contraction of cardiac myocytes by mechanical 
stretch under normal and pathological conditions remains to be 
elucidated.

The mitogen-activated protein kinase pathway
MAPKs are serine / threonine kinases that become activated upon 

tyrosine/threonine phosphorylation and additional modifications, 
and then in turn phosphorylate and activate nuclear substrates (such 
as c-myc, c-jun, ATF-2, and p62) and other kinases (such as p90 
and MAPKAP kinase) [59,60,153-156]. The three best characterized 
MAPK cascades are the ERK, c-Jun N- terminal kinase (JNK) and 
p38 MAPK cascades, the latter two belonging to the group of stress-
activated protein kinases. Studies from our lab and others indicate 
that ERK, JNK and p38 are activated by mechanical stretch in 
isolated neonatal rat ventricular myocytes [59,60]. MAPK may be 
contributing to regulation of contractile function in cardiac myocytes 
by mechanical stretch.

Protein kinase B/Akt
AKT, also referred to as protein kinase B, is a serine/threonine 

kinase found as part of the insulin, insulin-like growth factor-1 
(IGF-1)/phosphatidylinositol 3-kinase (PI3K)/phosphatidylinositol- 
dependent kinase-1 (PDK1) pathway [157]. Upon activation, AKT 
phosphorylates a broad range of substrates involved in metabolism, 
transcription, translation, cell growth, differentiation, proliferation, 
and survival [158,159]. In the heart the IGF-1/ AKT axis is implicated 
in the control of physiological cardiac hypertrophy, contractile 
function, and Ca2+ handling [160-167].

Associations between Akt activity and Ca2+handling proteins 
were initially observed in experimental models of cardiomyopathy 
wherein decreased Akt activation was concurrent with diminished 
SR or endoplasmic reticulum (ER) Ca2+-ATPase (SERCA), Na+/Ca2+ 
exchanger (NCX), and Phospholamban (PLB) phosphorylation [168]. 
Conversely, in transgenic mice with cardiac specific over expression of 
Akt, it was shown that the amplitude of Ca2+ current was enhanced in 
Akt myocytes compared with that in wild-type myocytes, which may 
be at least in part responsible for the enhanced cellular Ca2+ transients 
[161,169]. Second, an increased protein expression of SERCA could 
be identified as another molecular mechanism in transgenic mice 
expressing cardiac specific constitutively active Akt. Adenoviral 
gene transfer of the transgene into rat myocardium recapitulates this 
phenotype [170,171]. Recently, another study showed that activated 
Akt phosphorylates PLB at Thr17, providing a new mechanism 
whereby the preferential translocation of Akt to the SR is responsible 
for enhancement of contractility without stimulation of hypertrophy 
[170]. We have also reported that Akt functionally improves diastolic 
Ca2+handling through phosphorylation of PLB at Thr17 by anthrax 
lethal toxin [172].

Similarly, mice created with cardiac-specific expression of 
nuclear-targeted AKT also showed enhanced contractility and supra 
physiological ventricular dynamics, but the molecular mechanisms 
responsible for the increased cardiac performance were related to 
increase loading of the SR due to increased phosphorylation of Ser16 
PLB [173]. In addition, it was shown that phosphatase PP1, which 
dephosphorylates PLB and thereby inhibits SERCA, provides an 
additional pathway for increased contractility.

Mechanical Regulation of Calcium Ion
The primary function of the heart is to pump blood throughout 

the circulatory system to provide oxygen and nutrients to all tissues, 
as well as to remove unwanted metabolites. This circulatory pumping 
activity requires beat-to-beat rhythmic cytosolic Ca2+ oscillations in 
individual cardiac myocytes, which directly facilitates myofilament 
interactions to cause contraction and cell shortening [174]. At rest 
the myocyte sarcolemma and organelle membranes create physical 
barriers to amass Ca2+ concentrations in extracellular and intracellular 
compartments, respectively [175]. This facilitates the buildup of large 
electrochemical gradients across these barriers to allow rapid flow 
of Ca2+ when needed. Electrical, chemical and mechanical stimuli 
directly modulate numerous ion channels, transporters and pumps 
to govern Ca2+ flux across these physical barriers. For example, during 
cardiac excitation–contraction coupling, membrane depolarization 
activates sarcolemmal voltage gated L-type Ca2+ channels leading 
to net Ca2+ movement from the extracellular compartment into the 
cytosol [176]. Ca2+ influx via these channels then binds and stimulates 
the opening of the ryanodine receptors embedded in the SR. This 
process elevates free cytosolic Ca2+ from ~100 nM at rest to ~1 μM 
during contraction of cardiac myocytes; with peak Ca2+ levels in the 
junctional cleft upwards of 400 μM [176]. In a healthy myocyte, these 
transient elevations in cytosolic Ca2+ are quickly returned to baseline 
by Ca2+ transporters and pumps located at the sarcolemma and SR. 
Ca2+ transporters such as the NCX typically move Ca2+ outside the 
cell across the sarcolemma, while Ca2+ pumps such as the SR and 
plasma membrane Ca2+ ATPases harness ATP to pump Ca2+ against 
a gradient back into the SR and across the sarcolemma, respectively 
[174].
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Calcium entry
Cardiac myocytes respond to mechanical stretch with an increase 

in intracellular Ca2+ concentration and an increase in phospholipase 
C activity. The stretch induced increase in intracellular Ca2+ is caused 
by an initial Ca2+influx through L-type Ca2+channels and stretch 
activated channels and a subsequent Ca2+-induced release of Ca2+ 
from the SRvia the ryanodine receptor [177].

Ryanodine receptor
Ryanodine receptors (RyRs) are known mostly for their 

involvement in excitation-contraction coupling, releasing Ca2+ from 
the SR and thus driving muscle contraction. Three different isoforms 
(RyR1-3) have been found to date. RyR1 is widely expressed in 
skeletal muscle and was the first one to be cloned [178,179]. RyR2 
is found primarily in the heart [180,181], and RyR3 was originally 
identified in the brain [182], although each isoform is found in many 
different cell types [183].

Regulation of SERCA activity
There are 3 isoforms of SERCA. SERCA2 is the predominant 

variant of all SERCA isoforms and phylogenetically the oldest. Three 
different splice transcripts have been reported so far, SERCA2a, 
SERCA2b, and SERCA2c, which only differ at the C-terminus. 
SERCA2a is expressed in cardiac muscle and slow twitch skeletal 
muscle; SERCA2b is present in adult smooth muscle and non muscle 
tissues; and SERCA2c is found in cardiac muscle as well as non muscle 
tissue including epithelial, mesenchymal, and hematopoietic cells. 
In heart, SERCA2a activity controls both the rate of cytosolic Ca2+ 

removal and the degree of SR Ca2+ load, representing a fundamental 
determinant of both cardiac relaxation and contraction [184]. PLB 
and sarcolipin have been found to bind to the cytosolic and/or 
trans membrane domains of SERCA2a, with accumulating evidence 
suggesting that these interactions lead to inhibition of the pump’s 
affinity for Ca2+[185,186].

The histidine-rich Ca2+-binding protein (HRC) is a low-affinity, 
high-capacity Ca2+-binding protein located in the cardiac SR lumen 
[187]. Transgenic over expression of HRC in the heart depressed 
SR Ca2+ uptake rates, providing the support for the inhibitory role 
of HRC on SERCA2a and intracellular Ca2+ cycling [188]. Ca2+-CaM-
dependent protein kinases have also been shown to phosphorylated 
PLB and this occurs independently of PKA phosphorylation [189,190]. 
Phosphorylation by cAMP-dependent protein kinase occurs on Ser16, 
whereas Ca2+-CaM-dependent protein kinase catalyzes exclusively 
the phosphorylation of Thr17. Dephosphorylated PLB exerts an 
inhibitory effect on SERCA2a and phosphorylation by either kinase 
was shown to result in stimulation of the SR Ca2+-ATPase activity and 
the initial rates of SR Ca2+ transport by relieving inhibition on the SR 
Ca2+-uptake pump. Stimulation was associated with an increase in the 
apparent affinity of the SR Ca2+-ATPase for Ca2+ [189,190].

Studies in genetically-altered mouse models indicated that 
phosphorylation of I-1 at Ser67 by PKC-α was associated with 
increased PP1 activity and depressed contractility in vivo [191]. Other 
studies in isolated cardiomyocytes showed that phosphorylation at 
Ser67 were associated with enhanced PP1 activity, decreased PLB 
phosphorylation and depressed contractile function [192,193]. 
However, the mechanisms of SERCA in response to mechanical 
stresses have not fully understood.

Phospholamban
PKA-mediated phosphorylation of PLB at Ser16 and the 

subsequent relief of SERCA inhibition permits rapid reuptake of Ca2+ 
to the SR, enhancing relaxation kinetics and providing additional SR 
Ca2+ content for the next release. Secondary to the rise in cytosolic Ca2+ 
concentration that accompanies PKA-mediated changes, calmodulin 
kinase II (CaMKII) is activated, which further phosphorylates PLB 
at Thr17[194], leading to additional relief of SERCA inhibition, thus 
illustrating the complexity of phosphorylation responsiveness to 
agonist stimulation and the potential for interaction between the 
various signaling pathways. Dephosphorylated PLB is an inhibitor 
of SERCA and phosphorylation of PLB relieves this inhibition 
and PLB dephosphorylated by PP1 [195,196]. The role of NCX 
phosphorylation in regulating extrusion of Ca2+ from the cytoplasm 
into the extracellular space is controversial but does not appear to be 
a strong influence in mammalian ventricle [197]. There is evidence 
for phosphorylation of the Na+/H+ exchanger, which may indirectly 
affect intracellular Ca2+ by its influence on intracellular Na+ levels 
[198]. However, more work has to be carried out, not only to fully 
describe the intricate pathways that upstream and downstream 
converge on PLB to sustain the beat-to-beat cardiac function, but 
also to understand the role of this protein in physio-pathological 
adaptation and tolerance.

Regulation of sodium-calcium exchanger
NCX is a bidirectional plasma membrane transport protein for 

Na+ and Ca2+. In the “forward” mode, Na+ is transported inward and 
Ca2+ is transported out of the cell, whereas in the opposite is true 
for “reverse” mode [199]. It is unanimously agreed that the NCX 
is the main pathway for Ca2+ extrusion from ventricular myocytes 
[197,200,201]. During each heart beat Ca2+ balance is preserved by 
Ca2+ entry via L-type Ca2+ channels and Ca2+ exit predominantly via 
NCX [201]. NCX is located predominantly in the t-tubule membrane 
[202,203]. Its location at the t-tubules may help ensure rapid and 
synchronous Ca2+ removal from the cytoplasm throughout the cell 
and may help limit Ca2+ depletion in the t-tubules as a result of Ca2+ 
current in the t-tubule membrane. As the major Ca2+ extrusion 
pathway, NCX plays an important role in determining cellular, and 
hence SR Ca2+ content. The regulation of NCX by phosphorylation is 
controversial [204]. However, changes in membrane potential and in 
trans sarcolemmal Na+ and Ca2+ gradients alter its activity, so that a 
rise in intracellular Ca2+ will increase Ca2+ efflux, whereas an increase 
in intracellular Na+ or depolarization of the cell membrane decreases 
Ca2+ efflux [205]. It is need to be clarified the role of NCX in response 
to mechanical overload.

The Na /H exchanger (NHE) may also play a role in 
mechanotransduction since its activation increases intracellular pH 
(cytoplasmic alkalization) which is known to stimulate expression 
of hypertrophic marker genes and protein synthesis [206]. NHE 
is located in the sarcolemma and regulates Na influx and H efflux 
with a stoichiometry of one to one [207,208]. HOE 694, a specific 
inhibitor of NHE, markedly attenuated stretch-induced activation 
of the ERK pathway and stimulation of protein synthesis in cultured 
cardiomyocytes [209]. Furthermore, stretch-induced activation of the 
MAPK pathway was partially blocked by pretreatment with NH4Cl 
(intracellular acidification), suggesting that cytoplasmic alkalization 
may be a crucial step to activate the ERK pathway in stretched 
cardiomyocytes.
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Mechanical Regulation of Cross-Bridge 
Kinetics

The Frank-Starling mechanism reflects basic myocardial 
contractility represented by the length-tension relationship in isolated 
cardiac muscle and the ventricular function curve in experimental 
animals and patients [210]. Binding of cytosolic Ca2+ to a single site 
on cardiac troponin C (cTnC) strengthens the affinity of TnC for 
troponin I (TnI) and favors movement of the troponin-tropomyosin 
complex away from the actin-binding sites for myosin. Myosin 
cross-bridges then bind actin and, with sufficient ATP, crossbridge 
cycling proceeds. During relaxation, Ca2+ is released from cTnC as 
Ca2+ is removed from the cytosol by resequestration to the SR through 
SERCA and extrusion to the extracellular space through the NCX. 
Thus the systolic and diastolic phases of contraction are intimately 
controlled by the functional state of dihydropyridine receptor 
(DHPR), RyRs, TnC, TnI, SERCA, PLB, and NCX, and likely by other 
proteins as well.

Thin filament proteins
In diastolic state, force-generating reactions of cross-bridges with 

actin are inhibited, ATP hydrolysis is relatively low, and the sarcomere 
is relatively extensible [211]. Properties of the giant protein titin 
dominate the compliance of the relaxed sarcomere [212]. Interactions 
of thin filament regulatory proteins, the troponin heterotrimeric 
complex, and Tm hinder the actin-cross-bridge reaction. Calcium 
binding to a single regulatory site on cTnC triggers a release from this 
inhibited state by modifications of interactions among actin, Tm, and 
Tn [213-215]. Ca2+ -triggered protein-protein interactions engage a 
complex process releasing thin filaments from inhibition and actively 
promoting force-generating interactions between myosin cross-
bridges and actin. The Ca2+ sensor is cTnC, Ca2+-binding sites with 
consensus sequences for Ca2+ and Mg2+ binding [216,217]. Calcium 
binding to the single regulatory site triggers contraction by opening a 
hydrophobic patch at the N-terminal lobe. In the absence of the rest of 
the thin filament proteins, there is a relatively minimum exposure of 
the hydrophobic patch with Ca2+binding [218]. PKA, as well as PKD 
and PKG, phosphorylates cTnI at Ser23 and Ser24 [219], whereas PKCβ 
and PKCδ phosphorylate these as well as other cTnI sites [220-223]. 
These two sites appear to be the only sites that are phosphorylated 
at basal physiological levels of activity in mouse and pig hearts 
[224,225]. The major phosphatases controlling thin filament protein 
phosphorylation are PP1 and PP2A. Both of these phosphatases 
have been reported to have a Z-disc localization, placing them in 
close proximity to the A- and I-band regions of the sarcomere and 
indicating that their localization may be strain-sensitive [226, 227].

Thick filament proteins
In cardiac myocytes, sarcomeric contraction results from the 

Ca2+-regulated binding of the myosin motor to action. Ca2+ binds 
to troponin in actin thin filaments, thereby allowing myosin cross-
bridges in thick filaments to bind action for the development of force 
and cell shortening with ATP hydrolysis [228]. Myosin cross-bridges 
containing the actin-binding surface and ATP pocket in the motor 
domain, taper to an α-helical neck that connects to the myosin rod 
region responsible for the self-assembly into thick filaments. Two 
small myosin protein subunits, the essential light-chain (ELC) and 
the regulatory light-chain (RLC), wrap around each α-helical neck 

region, providing mechanical stability [229]. Cardiac myosin RLC 
is a likely candidate for having a central role in modulating cardiac 
contractility based upon its position at the fulcrum of the lever arm 
(S1-S2 junction of myosin heavy-chain (MHC) [230], and its ability 
to be modulated by charge [231]. Rates of entry of cross-bridges into 
force generating states have been demonstrated to be enhanced by 
radial movements of cross bridges induced by RLC phosphorylation, 
which moves cross-bridges closer to the thin filament [232]. Based 
upon findings in smooth muscle, it is assumed that cardiac RLC 
is phosphorylated by myosin light-chain kinase (MLCK) and de-
phosphorylated by myosin light-chain phosphatase (MLCP). The 
relevant MLCK isoform, cMLCK, in the heart had been a subject of 
debate [233,234]. RLC is de-phosphorylated by the major phosphatase 
is PP1c-δ [235]. PP1c-δis composed of a 38 kDa catalytic unit, which 
acts in concert with a larger ~100-130 kDa myosin binding unit that 
is similar to that discovered in smooth muscle, and now known as 
MYPT. Subsequent studies demonstrated that the major isoform in 
the heart is MYPT2 [236].

Sarcomeres are the functional unit of contraction in cardiac 
muscles, which consist of thick and thin filament proteins. Several 
proteins in the cardiac sarcomere have now been identified, including 
cardiac myosin binding protein-C (cMyBP-C), cardiac troponin I 
(cTnI), cardiac troponin T (cTnT), α-tropomyosin (α-TM) and the 
myosin light-chain (MLC) [237-241]. MyBP-C has defined roles in 
both the structural assembly and stability of the sarcomere, as well as 
in the modulation of contraction [242]. A unique feature of cMyBP-C 
in cardiac muscle is that it has three putative phosphorylation sites 
at Ser273, Ser282 and Ser302 that are phosphorylated by PKA [243], but 
only two of which (Ser273 and Ser302) are phosphorylated by PKC 
[244]. Recent studies have identified a new PKA phosphorylation 
site at Ser307 in vitro in murine cMyBP-C [245]. Independently, 
another study using rat neonatal cardiomyocytes described the 
Ser295, Ser315 and Ser320 phosphorylation sites in rat cMyBP-C 
[246]. A study using a myocardial stunning model described the 
regulation of phosphorylation at Ser279, Ser288, Ser290, Ser308, Ser313 
and Ser331 sites in canine cMyBP-C [247]. CaMKII can directly 
phosphorylate cMyBP-C at multiple sites [248]. Hierarchical 
phosphorylation patterns for cMyBP-C have been defined in vitro 
[243], and CaMKII site phosphorylation at Ser282 might be needed 
for phosphorylation of PKC sites (Ser273 and Ser302) [244,248,249]. 
Hierarchical phosphorylation might be involved in cMyBP-C-
mediated regulation of cardiac muscle contraction [243,244,248,249], 
and inhibition of CaMKII phosphorylation of cMyBP-C decreases 
contractility [250].Ca2+ ions can influence the contraction of cardiac 
muscle by activating CaMKII, which may specifically phosphorylate 
Ser282 [243,248,251] and modulate contractility by changing the thick 
filament structure [249]. After phosphorylation of cMyBP-C by 
PKA, the thick filaments exhibited a loose structure that prevents 
binding to myosin, thereby changing the maximumCa2+-activated 
force [252]. In other studies of intact myocardium in mouse models, 
PKA-phosphorylated cMyBP-C accelerated cross-bridge turnover 
rate under sub-maximum Ca2+ activation, which supports the 
premise that cMyBP-C functionally interacts with the S2 region to 
affect contractile function [253]. PKC-ε is known to phosphorylate 
cMyBP-C only at Ser273 and Ser302, and associated with altered Mg2+-
ATPase activity [254,255]. PKC mediated phosphorylation of cTnI, 
cTnT and cMyBP-C showed decreased myofilament Ca2+ sensitivity, 
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which might alter contractility of human myocardium [256]. cMyBP-
C’s ability to tether the thick and thin sarcomeric filaments orients the 
actin filament and myosin heads, which facilitates activation of cross-
bridge cycling [257]. When cMyBP-C phosphorylated, the interaction 
with myosin S2 region is lost and cMyBP-C can then associate with 
thin filament proteins, such as actin and α-tropomyosin [258]. The 
strength of the evidence for each of the cMyBP-Cinteractions with 
the thin filaments is variable, and the physiological consequences 
of thin filament interaction remain the subject of investigation. In 
addition, the exact cMyBP-C binding sites in actin and α-TM need 
to be clarified to define the nature of the cMyBP-C interaction with 
the thin filaments.

Indirect evidence from non-cardiac muscle studies suggests that 
Ca2+ binding to TnC can be regulated by both force-generating cross-
bridges, as well as frequency. Dissociation of force-generating cross 
bridges during a twitch in mouse skeletal muscle has been shown to 
decrease in the Ca2+ affinity of TnC [259], thus decreasing the Ca2+ 
sensitivity and resulting in the deactivation of the muscle. In high 
frequency contraction muscles such as toadfish swim bladde [260] and 
rattlesnake rattle muscle [261] TnC has a decreased affinity for Ca2+, 
which likely requires molecular modification of TnC to a lower affinity 
type. Although critical protein sequences and kinetics associated for 
Ca2+ binding affinity to cTnC have been identified in cardiac tissue 
more than a decade ago[262], post-translational determinants for 
regulating the affinity of cTnC for Ca2+ remain to identified in the 
heart under physiological and pathological conditions.

Clinical Perspectives
Mechanosensors have been implicated in a wide array of 

pathophysiologic conditions in multiple organ systems and diseases 
including HF. HF are a leading cause of morbidity and mortality 
throughout the world. Diagnosing cardiac disease costs more than 
any other disease category and its treatment costs exceed that of 
cancer [263]. Cardiac hypertrophy is a well-known response to 
increased hemodynamic load. Understanding the mechanisms of 
mechanical stretch sensing could lead to new diagnostic and genetic 
testing methodologies to better predict, treat and possibly even 
prevent HF in future patients. Several findings covered in the review 
have significant potential clinical applications.

Atrial fibrillation (AF) is one of the most common arrhythmias, 
it increases mortality and risk for stroke, and has been shown to 
share many of the same risk factors as HF. Approximately 40% of 
individuals with either AF or HF will develop the other conditions 
[263]. The up regulation of TRPC channels in hypertrophy and 
location within the electrical conduction system of the heart [76-82] 
may help explain the link between AF and HF, and may even be a 
novel therapeutic target in its diagnosis and treatment.

Under mechanical stress angiotensin II and angiotensinogen levels 
do not increase; however mechanical stretch was found to trigger the 
angiotensin II type 1 receptor. Through conformational changes in 
β-arrestin the AT1R stimulated an increase in phosphorylation of ERK 
in the absence of G protein signaling. The ability of can desartan and 
olmesartan to stabilize the AT1 receptor in its inactive conformation 
and attenuate ERK activation in response to mechanical stress [39,40] 
suggests the potential benefit of using angiotensin receptor blockers 

over angiotensin converting enzyme inhibitors in patients with high 
pressure HF.

Non-cardiac cell studies have suggested that β1-integrin’s 
coupling with FAK could be a significant regulatory factor in 
myocyte contractile force, thus hinting to its potential as a therapeutic 
target for investigation. Other integrin subtypes may also have 
similar potential. The discovery of the apelin receptor’s bimodal 
nature in mechanical signaling [85] yields significant potential for 
clinical impact. Blockade of the mechanically induced signal of the 
apelin receptor and stimulation of its ligand signal could lead to a 
powerful novel therapeutic avenue for HF. A better understanding 
of the downstream signaling pathways in response to mechanical 
stimulation of the APJ may also provide prognostic indicators of a 
patient’s response to mechanical stress.

Rho family GTPases Rac1 and RhoA are both stimulated by 
mechanical stretch, but have opposing actions [61]. Both pathways 
have effects on Ca2+ regulation through L-type Ca2+ channels and 
SERCA2a [141-145], and mediate the hypertrophic response by 
interacting with Rho A and FAK. Therapeutic interventions that favor 
the blockade of RhoA or the induction of Rac1 may hold beneficial 
clinical effects in the treatment of HF.

Titin is commonly assumed to be a non-dynamic molecular 
spring; however its I-band region has three extensible elements 
that play a role in regulating its actions in relation to contractility 
[102]. Beta adrenergic activated PKA, as well as PKG phosphorylates 
the N2B element of titin and causes reduced passive tension [103]. 
PKC-α phosphorylates the PEVK element of titin [106] causing an 
opposing effect by increasing titin-based passive tension. A basal level 
of phosphorylation seems to play a role in determining titin-based 
passive tension. Titin is mechanically deformable, active in multiple 
signaling pathways including gene expression and directly linked 
to sarcomeric elements; it is uniquely equipped to serve as a multi-
parameter mechanosensor. Due to its function within the sarcomere, 
titin itself plays a major role in the mechanical pathogenesis of HF 
by dynamically changing its passive tension in response to cellular 
signaling. This makes the titin I-band region elements an excellent 
potential therapeutic and investigative target for diastolic dysfunction. 
While the PKA mediated phosphorylation of phospholamban 
(PLB) at Ser16 has been well studied as a mechanism of increasing 
cardiac contractility, PLB’s phosphorylation of Thr17 by Akt has not. 
Investigation of this new pathway may provide information to better 
understand the etiology of HF as well as identify future therapeutic 
pathways.

As the major intermediate filament in the heart, desmin gene 
mutations have been found to play an important role in at least 
45 genetic cardiomyopathy conditions termed desminopathies. 
Similarly integrin linked kinase (ILK) studies have shown profound 
effects in cardiac modeling with over expression causing hypertrophic 
cardiomyopathy and knockout leading to dilated cardiomyopathy. 
Desmin and ILK obviously play major roles in the regulation of 
cardiac function but future clinical therapies will require more 
investigation to better elucidate their exact functions. 

Conclusion
The heart is a kinetically dynamic organ which adapts by 
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responding to a variety of external forces which are transduced 
into biochemical signals involving Tran’s membrane receptors, 
structural proteins, signaling factors and scaffold proteins. It has 
been well established that mechanical stress leads to activation of a 
variety of mechanosensors and associated downstream pathways 
such as MAPKs, FAK, Rho GTPases and PI3K/Akt that regulate gene 
expression, metabolism and growth in the heart. However, it has only 
recently become apparent that these mechanosensing mechanisms 
couple to contractile function by regulating pumps, channels 
and contractile proteins in the heart. Future studies remain to be 
performed to elucidate the precise mechanisms by which the various 
mechanosensing mechanisms control contractile performance in 
the myocardium. Unraveling the details of these stress-dependent 
pathways will help to identify therapeutic strategies that can be used 
in the treatment of heart disease.
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