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Abstract

Over the past two decades, plants have been developed as inexpensive, 
efficacious and safe production platforms for vaccines and other 
biopharmaceuticals. One of the up and coming ways to generate vaccines 
quickly and in large amounts in plants is through the use of deconstructed 
plant virus expression vectors. This review discusses several of the state-of-
the-art plant virus expression systems that have been engineered for vaccine 
production. Recent advances in tobamovirus, cucumovirus, geminivirus, and 
several other virus expression vector systems are described in this review, and 
examples of vaccines generated from each are described.

Keywords: Plant-based vaccines; Virus expression vector; Immune 
response

Introduction
Plant-derived vaccines and other pharmaceutical proteins have 

made great advances over the past two decades and are now beginning 
to be found in the marketplace. Plant-derived vaccines are efficacious, 
safe, and inexpensive and lack cold chain requirements. They can 
easily be scaled up or down for large scale production, merely by 
increasing or decreasing the amount of plant biomass utilized. Plant-
made vaccines can find their forte in places where conventional 
vaccines fail to deliver. For example, due to their inexpense, plant-
made vaccines offer hope to the impoverished who reside in rural 
communities within developing countries. Similarly, governments 
who are interested in stockpiling vaccines against pandemic infectious 
diseases can generate them from plants simply and rapidly [1,2].

Vaccines were first generated from constructs that were stably 
integrated in transgenic plants; however, new technologies which 
focus on transient expression systems have increasingly become 
popular. Virus expression vectors have been developed to act in a 
‘deconstructed’ form, that is, lacking the open reading frames that 
encode movement and coat protein functions, so that the virus 
cannot become encapsidated or infect unintended plants but instead 
remains bio-contained. Plant viruses which have been engineered 
to be delivery vehicles for vaccine proteins provide a number of 
advantages over transgenic plants; these include rapid and high 
expression levels and the freedom from some of the concerns that 
are frequently brought up with respect to genetically modified crops, 
such as transmission of the transgenes to weedy relatives [3].

Original studies using plant viruses constructed as expression 
vectors involved infecting the host plant, resulting in a low yield 
of infection due to tissue specific limitations of the virus as well 
as the lack of synchrony of the virus life cycle. More recently, 
agroinfiltration of the virus vector into host leaves using a syringe, or 
into many plants en masse under a vacuum, has become the method 
of choice [4]. Using this approach, the virus vector can be introduced 
to every external cell of the host at the same time, resulting in a highly 
temporally controlled infection which can result in much higher 
levels of vaccine protein production.

Plant viruses have been developed as vectors for heterologous 
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protein production as well as for plant functional genomics studies, 
by employing virus induced gene silencing (VIGS) to down-regulate 
specific host transcripts. Both of these technologies offer great 
promise for the agricultural and pharmaceutical industries alike. The 
following review describes recent progress in plant virus expression 
vector development, and their use for the production of vaccines and 
other therapeutic proteins.

Positive-sense RNA virus expression vectors
Positive-sense, single-stranded RNA viruses are the largest group 

of plant viruses that have been engineered into expression vectors for 
vaccine production. These include the tombusvirus, the potexvirus, 
the cucumovirus and the comovirus groups.

Tombusviruses: Tobacco mosaic virus (TMV) is one of the first 
plant viruses that have been engineered for use in biopharmaceutical 
production. The first generation of virus expression vectors derived 
from TMV were based on usage of the entire viral genome and 
were inoculated onto the leaves of the host, where the recombinant 
virus underwent a natural infection cycle. More recently, a series of 
second generation ‘deconstructed’ expression vectors, consisting of 
only essential elements of the virus genome necessary for replication 
were included on a series of plasmid constructs. One of the 
preliminary series of deconstructed TMV vector modules, known as 
the MagnICON® vector system, was developed and transfected into 
plants in a process known as ‘magnifection.’ This involves the vacuum 
infiltration of a suspension of Agrobacterium cells into the leaves of 
tobacco plants, in such a way that infection takes place in every cell, 
and in a synchronous fashion [5]. Mixtures of different combinations 
of modules can be transformed into the Agrobacterium, making it 
easy to produce an assortment of biopharmaceuticals rapidly. This 
system has been used to produce a number of vaccine proteins, 
including plasmodium antigen, bovine herpes virus-gD protein, and 
the envelope protein of Dengue virus [6-8]. The expression system 
can be further modified by altering transcript splice sites and codon 
usage patterns to further improve this expression platform. Co-
expression of a suppressor of gene silencing P19 in conjunction with 
the expression modules can also enhance protein expression [9].

Another way to increase gene expression in a TMV-based vector 
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is by placing the open reading frame closer to the 3’ terminus. The 
CP open reading frame has been removed in this TRBO (TMV 
RNA-based overexpression) vector, and is a much more powerful 
production platform than the earlier system using P19 [10].

Potexviruses: Another well characterized single-stranded 
RNA virus expression vector system has been engineered from the 
potexviruses. Potato virus X vectors, for example have been used 
to express vaccine proteins such as the Human papillomavirus-16 
L2 minor capsid protein and a conserved influenza epitope [11,12]. 
These antigens can be expressed from the PVX genome itself in plants 
or as part of a fusion protein with the PVX CP.

Recently, the potexvirus Narcissus mosaic virus (NMV) was 
developed as an expression vector to be used in the plant host N. 
benthamiana for secondary metabolite production [13] NMV does 
not cause visible pathogenic symptoms in N. benthamiana. The NMV 
expression vector was constructed to include the Gateway system to 
assist in the high throughput cloning of foreign genes. The R2R3 MYB 
transcription factor AtMYB75 (PAP1), that promotes anthocyanin 
biosynthesis in Arabidopsis, was used to induce visible pigment 
production and significant changes in metabolite production in 
infected plants.

Cucumovirus: Cucumber mosaic virus (CMV) has a trimeric 
genome and a wide host range. Since CMV virions take the form of 
an icosahedrons, their use as vaccine vectors is limited due to size 
constraints, however, CMV has also been used successfully as an 
antigen presentation system. For example, an epitope corresponding 
to the capsid protein of porcine circovirus type 2 (PCV2) has been 
placed on the surface of a CMV expression vector; chimeric CMV: 
PCV2 particles were then injected parentally into mice and pigs. After 
demonstrating a PCV specific antibody response, pigs challenged 
with virus demonstrated a partial protection against infection [14]. 
More recently, mice fed chimeric CMV: PCV2 were shown to elicit 
a mucosal and serum immune response, and piglets fed chimeric 
CMV: PCV2 exhibited porcine circovirus-specific antibodies, 
demonstrating that this plant-derived virus expression system could 
be used for mucosal vaccine production [15].

Cowpea mosaic virus
The icosahedral Cowpea mosaic virus (CPMV) has also been 

designed to generate full length proteins or fusion proteins which 
can later be proteolytically cleaved as well as an epitope presentation 
system in the form of virus-like particles (VLPs) [16]. One recent 
example is the use of CPMV VLPs to carry influenza virus antigens 
as a novel vaccine platform. This technology, designed by Medicago, 
fully protected against lethal viral challenge in both animal trials 
as well as in a Phase 1 human clinical trial. More recently, a non-
replicating expression system based on CPMV, known as pEAQ, 
has been engineered and has been greatly successful in producing 
foreign proteins at high levels in the absence of replication. The gene 
of interest is inserted between the 5’ leader and 3’ non-transcribed 
region of RNA-2 [17]. A highly efficient Cowpea Mosaic Virus hyper-
translational “CPMV-HT” expression system, based on the previous 
system, can generate even higher yields of recombinant protein [18]. 
This construct contains a modified 5’ UTR, lacking upstream AUG 
codons and an unmodified 3’ UTR derived from CPMV RNA-2. The 
efficiency of this virus expression system has been explored further, 

through the development of a series of 5’ and 3’ UTR mutants [19]. 
The authors found that a Y shaped stem- loop secondary structure 
found within the 3’ UTR played a significant role in enhancing 
reporter gene expression, and its disruption greatly reduced 
expression levels. The enhancing role of the Y-shaped structure 
was confirmed by substitutions with similar structures from the 3’ 
UTRs of other plant RNA viruses, and acted by enhancing the levels 
of mRNA accumulation. The 5’ and 3’ UTRs were found to exert 
their enhancing effects independently of each other, implying that in 
the future, a spectrum of expression vectors based on CPMV with 
controlled levels of mRNA transcripts and translation efficiencies 
could be produced. This system has been employed to generate 
Bluetongue virus (BTV)-like particles in plants as a vaccine which can 
protect sheep against live virus infection [20].

Plant DNA viruses
Plant DNA viruses, in particular, geminiviruses; have been 

engineered as highly effective virus expression vectors. Geminiviruses 
named for their twinned capsid morphology; are small single stranded 
DNA viruses which have been shown as expression vectors to replicate 
to extremely high copy numbers and have expressed vaccine proteins 
ranging from Hepatitis A VP1 virus to monoclonal antibodies against 
Ebola virus [21,22]. The circular genome of geminiviruses replicate 
by rolling circle replication, using the replication initiator protein 
Rep. Rep is essential for virus replication. Unlike their RNA virus 
counterparts, DNA viruses can tolerate large inserts and remain 
stable after many generations of replication. The first geminivirus 
expression vectors expressed Rep independently from the rest of 
the virus genome, under constitutive, inducible or developmental 
promoters. In this way, vector replication could be induced and 
foreign gene expression could be enhanced enormously.

Recently, Dugdale et al., [23], engineered the mastrevirus 
Tobacco yellow dwarf virus (TYDV) as a double-expression cassette 
system [23,24]. One expression cassette encodes Rep/Rep A under 
the control of the ethanol inducible AlcA: AlcR promoter, while 
the second expression cassette contains the open reading fame 
encoding the foreign protein, also under the control of the ethanol 
inducible promoter. Thus, by applying a simple ethanol spray, the 
construct can become activated to undergo rolling circle replication 
and express the gene of interest. Furthermore, the gene of interest 
resides in the INPACT (In Plant Activation) cassette, in the form 
of two halves, which are separated from each other by a synthetic 
intron. As a result, the foreign gene of interest can only be expressed 
from replicons which have been activated by the ethanol spray and 
have been processed to splice out the intron. Having the TYDV 
sequences responsive to an ethanol spray ensures that expression of 
the desired protein can be controlled temporally, spatially and in a 
dose-dependent manner [23].

Conclusion
Plant virus expression vectors have been engineered to function 

as rapid, inexpensive and robust platforms for vaccine production. 
The implications of this and other technologies related to molecular 
pharming in plants are substantial; not only can the world’s rural 
poor benefit from the low cost and improved accessibility of plant 
made vaccines and other therapeutic proteins, but the capability to 
upscale and stockpile these vaccines in a time effective manner in 
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order to combat global pandemics, for example, provides a select 
advantage over conventional vaccine production. A number of 
technical challenges concerning plant-based biopharmaceuticals 
must be overcome in order to bring this technology to fruition. These 
include limitations with respect to plant virus expression vector host 
range, poor expression levels of the therapeutic protein in plants, 
innate differences with respect to the post translational modification 
profiles of mammalian proteins generated in plants, and potential 
allergenicity issues related to plant-based products. Public perception 
of plant biotechnology also remains an issue that must be better 
addressed. Further research and development, as well as a better 
informed public should help to resolve these problems.

As research and development progresses, even more sophisticated 
plant virus expression systems will become available. For example, 
Cowpea chlorotic mottle virus (CCMV) capsid proteins can package 
RNA from Sindbis virus, an animal virus, to produce hybrid, cellular 
nuclease- resistant VLPs which can be delivered to mammalian cells. 
Moieties involved in subcellular targeting can be conjugated to this 
hybrid CCMV: Sindbis VLPs so that they can release their RNA 
contents at appropriate sites within the cell [25]. It is innovations 
such as these which will broaden the number of applications of plant 
virus expression vectors in the field of medicine for many years to 
come.
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