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Abstract

All cardiac syndromes may induce alterations of cardiac metabolism. Heart 
failure may itself promote metabolic changes such as insulin resistance, in part 
through neurohumoral activation, and determining an increased utilization of 
non-carbohydrate substrates for energy production. In fact, fasting blood ketone 
bodies as well as fat oxidation have been shown to be increased in patients with 
heart failure. The result is depletion of myocardial ATP, phosphocreatine and 
creatine kinase with decreased efficiency of mechanical work. A direct approach 
to manipulate cardiac energy metabolism consists in modifying substrate 
utilization by the failing heart. To date, the most effective metabolic treatments 
include several pharmacological agents, such as trimetazidine and perhexiline 
that directly inhibit fatty acid oxidation. These agents have been originally 
adopted to increase the ischemic threshold in patients with effort angina. 
However, the results of current research is supporting the concept that shifting 
the energy substrate preference away from fatty acid metabolism and toward 
glucose metabolism could be an effective adjunctive treatment in patients 
with heart failure, in terms of left ventricular function and glucose metabolism 
improvement. In fact, these agents have also been shown to improve overall 
glucose metabolism in diabetic patients with left ventricular dysfunction. 
Moreover, recent meta-analysis and a multicenter retrospective study have 
shown that additional use of trimetazidine in patients with heart failure, along 
with symptoms and cardiac function improvement also provides a significant 
protective effect on all-cause mortality, cardiovascular events and hospitalization 
due to cardiac causes. Nevertheless, the exact role of metabolic therapy in 
heart failure is yet to be established, and a large multicenter randomized trial is 
necessary.

In this paper, the recent literature on the beneficial therapeutic effects of 
modulation of cardiac metabolic substrates utilization in patients with heart 
failure is reviewed and discussed. 
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ventricular performance and myocardial energy consumption. 
Despite markedly impaired left ventricular work, the oxygen 
cost of contraction remains relatively unchanged, resulting in a 
decrease in the mechanical efficiency of contraction (Figure 1) [1]. 
On the contrary, the introduction of drugs intended to modulate 
neurohormonal activation consequent to HF, has been shown to 
slow disease progression. Despite these advancements, morbidity and 
mortality due to HF remain high, indicating that the development 
of adjunctive pharmacological agents and the identification of 
alternative therapeutic targets and strategies is needed. Recent studies 
have investigated the possibility of increasing cardiac performance 
without affecting oxygen consumption and hemodynamics, by agents 
aimed at enhancing myocardial energy efficiency. 

General aspects of myocardial metabolic modulation
Most investigators have focused their efforts on agents that 
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Introduction
Heart Failure (HF) has been traditionally treated through 

modification of hemodynamic alterations occurring in the failing 
heart, but administration and research on positive inotropes 
and drugs targeted at improving hemodynamics have yielded 
disappointing results. This is mainly due to the mechano-energetic 
uncoupling that characterize HF, i.e. an imbalance between left 
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shift energy substrates utilization away from fatty acid metabolism 
and towards glucose metabolism, which is more efficient in terms 
of ATP production per mole of oxygen utilized. Carbohydrate 
metabolism may be directly increased by agents such as sodium 
dichloroacetate that stimulates pyruvate dehydrogenase activity 
by inhibiting pyruvate dehydrogenase kinase [2]. Stimulation of 
pyruvate dehydrogenase activity leads to enhanced glycolysis of 
glucose and utilization of lactate by the myocardium for aerobic 
respiration. Myocardial consumption of Free Fatty Acids (FFA) 
is simultaneously inhibited, with the overall effect of a change of 
substrate utilization from predominantly non-esterified fatty acids to 
glucose and lactate [3], finally resulting in improved left ventricular 
mechanical efficiency [4]. Alternatively, agents that directly inhibit 
fatty acid oxidation include 1) inhibitors of mitochondrial uptake of 
FFA via suppression of Carnitine Palmitoyl Transferase (CPT) I and 
II, 2) direct inhibitors of 3-Ketoacyl Coenzyme A Thiolase (3-KAT), 
the last enzyme involved in ß-oxidation (Figure 2). Of the latter 
pharmacological class, trimetazidine (1-[2,3,4-trimethoxybenzyl] 
piperazine dihydrochloride) is the most studied drug. Trimetazidine 
has been shown to affect myocardial substrate utilization by inhibiting 
oxidative phosphorylation and by shifting energy production from 
FFA to glucose oxidation [5]. Experimental evidence indicates that 
this effect is predominantly caused by a selective block of long chain 
3-KAT [6]; however, this issue is still under debate [7,8]. These 
beneficial effects can be explained by the fact that by increasing 
utilization of glucose and lactate, which are more efficient fuels 
for aerobic respiration, the oxygen consumption efficiency of the 
myocardium can be improved by 16% to 26% [9]. In a very recent 
study Kuzmicic et al proposed a further possible mechanism of 
cellular protection for cardiomyocytes: trimetazidine protected 
cultured cardiomyocytes from palmitate-induced mitochondrial 
fission and dysfunction, increased intracellular lipid accumulation, 
and prevented palmitate-induced ceramide production, indicating 
that trimetazidine protects cardiomyocytes by changing intracellular 
lipid management and through modulation of the mitochondrial 
morphology and function [10]. These beneficial effects could be also 

effective in the skeletal muscles, as in vitro skeletal muscle models 
of atrophy indicate that trimetazidine triggers autophagy and 
counteracts stress-induced atrophy in skeletal muscle myotubes [11].

Fasting blood ketone bodies [12] as well as fat oxidation during 
exercise [13] have been shown to be increased in patients with HF. 
Insulin resistance has also been found associated with HF [14] and 
the consequent impaired suppression of lipolysis could determine the 
development of ketosis. Additionally, heart and arm skeletal muscle 
glucose uptakes are inversely related to serum Free Fatty Acid (FFA) 
levels [15] and increased FFA flux from adipose tissue to non-adipose 
tissue amplifies metabolic derangements that are characteristic 
of the insulin resistance syndrome [16]. New findings also suggest 
that raised FFA levels do not only impair glucose uptake in heart 
and skeletal muscle but also cause alterations in the metabolism of 
vascular endothelium leading to premature cardiovascular disease 
[17]. Therefore, FFA inhibitors could also play additional beneficial 
roles in terms of myocardial metabolism homeostasis. 

Left ventricular dysfunction and myocardial metabolic 
modulation

Based on the hypothesis that FFA inhibitors could act as 
metabolic modulators in the protection of ischemic myocardium, 
Brottier and Colleagues assessed the value of long term treatment 
with trimetazidine in patients with severe ischemic cardiomyopathy, 
who were already receiving conventional therapy [18]. Twenty 
patients were randomized to either placebo or trimetazidine. All 
patients on trimetazidine, at 6 months follow-up, reported a clinically 
considerable improvement in symptoms and showed a higher 
ejection fraction compared to patients on placebo. The Authors 
concluded their study recommending the use of trimetazidine as 
a complementary therapeutic tool in patients with severe ischemic 
cardiomyopathy.

Figure 1: FFAs inhibit glycolysis and glucose uptake by the heart.  Plasma 
FFA taken up by the heart is activated and transported by Carnitine 
Palmitoyltransferase-1 (CPT-1) into the mitochondria to uncouple respiration 
with oxygen wastage. Additionally, hyperadrenergic state downregulates 
beta-adrenergic receptors. 
Abbreviations: Acetyl-CoA: Acetyl Coenzyme A; ATP: Adenosine 
Triphosphate; FFA: Free Fatty Acids; PDH: Pyruvate Dehydrogenase

Figure 2: Effects of metabolic drugs at mitochondria level. Carbohydrate 
metabolism may be directly increased by agents such as sodium 
dichloroacetate, which stimulates Pyruvate Dehydrogenase (PDH) activity 
by inhibiting pyruvate dehydrogenase kinase. Stimulation of PDH activity 
leads to enhanced glycolysis and utilization of lactate by the myocardium 
for aerobic respiration. Myocardial consumption of Free Fatty Acids (FFA) 
is simultaneously inhibited, with the overall effect of a change of substrate 
utilization from predominantly FFA to glucose and lactate. Perhexilline, 
oxfenicine, and etomoxir prevent the uptake of FFA by inhibiting carnitine 
palmitoyltransferase I, which is a key mitochondrial enzyme involved in 
this process. Trimetazidine inhibits β-oxidation of FFA. These actions shift 
myocardial substrate use from FFA to glucose, which is more efficient in 
terms of energy production, leading to an oxigen-sparing effect. 
Abbreviations: CoA: Coenzyme A; CPT: Carnitine Palmitoyltransferase; 
DCA: Dichloroacetate; FA: Fatty Acid; G6P: Glucose-6-Phosphate.
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Subsequently, the effects of trimetazidine on dobutamine-induced 
left ventricular dysfunction in patients with angiographically proven 
coronary artery disease were assessed [19]. Patients were blindly and 
randomly assigned to a 15 day treatment period with either placebo or 
trimetazidine. They were then crossed over to the other regimen for 
15 additional days. At the end of each treatment period, a stress echo 
with dobutamine was performed. Both in resting condition and at 
peak dobutamine infusion, wall motion score index was significantly 
lower on trimetazidine therapy than on placebo. Furthermore, 
trimetazidine induced an increase in dobutamine infusion time and 
an increase of the administered dobutamine dose to the development 
of ischemia. These results indicated that trimetazidine may not only 
protect from dobutamine-induced ischemic dysfunction, but could 
also improve resting regional left ventricular function, as shown by 
the significantly decreased peak and resting wall motion score index, 
during the active treatment period. A subsequent study confirmed 
these preliminary results [20].

Post-ischemic heart failure and modulation of myocardial 
metabolism

The concept that 3-KAT inhibitors should be able to promote the 
utilization of glucose and non fatty substrates by the mitochondria led 
to focus attention on HF, where maintenance of metabolic efficiency 
is a crucial issue. 

 Initially, the effects of the addition of trimetazidine to standard 
treatment of diabetic patients with ischemic dilated cardiomyopathy 
on symptoms, exercise tolerance and left ventricular function, were 
assessed [21]. Thirteen such patients on conventional therapy were 
randomly allocated in a double blind fashion to either placebo or 
trimetazidine, each arm lasting 15 days and then again with placebo or 
trimetazidine for 2 additional 6 month periods. Both in the short and 
long terms, trimetazidine showed a significant beneficial effect on left 
ventricular function and control of symptoms, compared to placebo. 
The observed short-term trimetazidine benefit was maintained in the 
long-term and contrasts with the natural history of the disease, as 
shown by the mild but consistent decrease of EF when on placebo.  
These results paved the way to additional studies, that have invariably 
confirmed the positive effects of trimetazidine in patients with post-
ischemic left ventricular dysfunction [22-25]. More specifically, Di 
Napoli et al [24] observed that the improvement of left ventricular 
function was also paralleled by a reduction of the inflammatory 
response in patients treated with trimetazidine. Finally, a more recent 
study from the same Authors has shown that long-term trimetazidine 
significantly reduces all-cause mortality and HF hospitalization 
in patients with ischemic cardiomyopathy [26]. All these studies 
were conducted on patients already on conventional therapy 
which included Angiotensin-Converting Enzyme (ACE) inhibitors 
(sometimes substituted by angiotensin receptor antagonists), beta-
blockers and, in a more limited amount of cases, spironolactone or 
other anti-aldosterone drugs. 

Modulation of myocardial metabolism in heart failure of 
different ethiologies

The beneficial effect of trimetazidine on left ventricular 
function, has been attributed to preservation of Phosphocreatine 
(PCr) and Adenosintriphosphate (ATP) intracellular levels [27]. 
Previous clinical studies using phosphorus-31 magnetic resonance 

spectroscopy to measure PCr/ATP ratios in human myocardium 
have shown that this ratio is reduced in failing human myocardium 
[28]. The PCr/ATP ratio is a measure of myocardial energetics and its 
reduction may depend on imbalance of myocardial oxygen supply and 
demand [29] and reduction of the total creatine pool, a phenomenon 
known to occur in HF [30]. In a recent study performed in patients 
with HF of different ethiologies on full standard medical therapy, 
it has been observed that the trimetazidine-induced improvement 
of functional class and left ventricular function is associated to an 
improvement of PCr/ATP ratio, supporting the hypothesis that 
trimetazidine probably preserves myocardial high energy phosphate 
intracellular levels [31]. These results appear particularly interesting, 
especially in view of previous evidence indicating the PCr/ATP ratio 
as a significant predictor of mortality [32]. 

Based on the results of this pilot study, it has also been tested 
whether trimetazidine added to usual treatment, could also be 
beneficial in a more consistent group of patients with systolic-
dysfunction HF of different etiologies [33]. Compared to patients 
on conventional therapy alone, those on trimetazidine improved 
functional class, exercise tolerance, quality of life and left ventricular 
function (Figure 3) and used less diuretics and less digoxin. Plasma 
B-type Natriuretic Peptide (BNP) level was also significantly reduced 
in patients on trimetazidine, compared to conventional therapy alone. 
These beneficial effects on left ventricular function could explain the 
subsequent observation of the anti-arrhythmic effect of trimetazidine 
in patients with post-ischemic HF [34].

A recent study has evidenced that energy deficiency in HF might 
result from increased uncoupling proteins (ie, less efficient ATP 
synthesis) and depleted glucose transporter protein (i.e., reduced 
glucose uptake) [35]. On this ground, the adoption of drug therapies 
such as 3-KAT inhibitors, aimed at interrupting the metabolic vicious 
circle in HF, has been advocated [36].

Finally, a recent international multicenter retrospective study on 
more than 600 patients demonstrated that patients on trimetazidine 
on top of conventional therapy showed a significant reduction of 
overall and cardiovascular morbidity and mortality at 5-year follow 
up compared to a control group on conventional therapy alone. 

Figure 3: Long-term effects of trimetazidine on ejection fraction in patients 
with heart failure of different etiologies. Histograms (mean±1 SD) show 
the significant beneficial long-term effects of trimetazidine compared with 
conventional therapy alone.
Abbreviations: EF: Ejection Fraction; ns: Not Significant; SD: Standard Devia-
tion; TMZ: Trimetazidine.
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This study, even if limited by its retrospective nature, confirmed in a 
large cohort of patients the potential usefulness of metabolic therapy 
with trimetazidine also in terms of prolonged overall and event-free 
survival [37]. 

Again, in all the reported clinical trials trimetazidine was tested 
on top of usual treatment for HF, which included neurohumoral 
counter-regulatory drugs such as ACE inhibitors and beta-blockers.

Overall, this data confirm that selective inhibition of 3-KAT 
represents a new therapeutic window in the treatment of patients 
with HF of different etiologies, and not only secondary to ischemic 
heart disease. 

Insulin resistance, endothelial dysfunction and heart 
failure

Modulation of abnormal glucose metabolism in heart failure: 
Regulation of glucose metabolism is an important target in the control 
of cardiovascular risk factors. Abnormalities of glucose homeostasis 
range from frank diabetes to a state of insulin resistance, a definition 
used to indicate the necessity to increase insulin levels in order to 
maintain normal glycemic levels. Recent studies have identified a 
direct relation between endothelial dysfunction and insulin resistance 
[38]. Endothelin-1 (ET-1) levels have been shown to significantly 
correlate with fasting insulin levels, systolic and diastolic blood 
pressure, visceral obesity and triglyceride levels, confirming a close 
relationship between insulin resistance and endothelial function [39]. 
When present, insulin resistance has been found to be operative in 
both cardiac and skeletal muscles [40]. Different degrees of endothelial 
dysfunction, often associated to a state of insulin resistance, have 
been evidenced in most cardiovascular diseases such as hypertension 
[41], coronary artery disease [42], microvascular angina [43] and HF 
[14]. On the other hand, insulin resistance is a pathological condition 
that is rarely diagnosed as a distinct entity. Our group has shown that 
more than 50% of patients submitted to coronary stenting for ischemic 
heart disease and with normal baseline blood glucose levels, present 
abnormal hyperglicemia after an oral glucose tolerance test, and that 
these abnormalities are associated to a higher probability of restenosis 
[44]. These results are supported by previous studies showing that 

impaired glucose tolerance not only runs the risk of developing overt 
diabetes and its associated microvascular complications but also has 
an increased risk of cardiovascular morbidity and mortality compared 
with healthy glucose-tolerant patients [45]. Therefore, early detection 
of impaired glucose tolerance would permit initiation of secondary 
preventive treatment measures in such patients.

Another possibility is to directly induce muscles to reduce FFA 
utilization in favor of glucose oxidation. In this context, the use of a 
partial fatty acid inhibitor could play a very specific role. In fact, as 
previously outlined, most cardiac diseases are associated to combined 
insulin resistance and endothelial dysfunction. In these contexts, 
improving the cardiac metabolic milieau by partially inhibiting FFA 
utilization could be particularly effective. 

By keeping in mind the concept that 3-KAT inhibitors should, 
therefore, be able to promote the utilization of glucose and non fatty 
substrates by the mitochondria, attention has been focused on this 
specific issue. In fact, apart from improving left ventricular function 
in cardiac patients, it has been recently shown that trimetazidine 

could also improve overall glucose metabolism in the same patients, 
indicating an attractive ancillary pharmacological property of this 
class of drugs [21]. In fact, the known insulin resistant state in most 
cardiac patients is certainly aggravated in those patients with overt 
diabetes. This is particularly relevant in patients with both diabetes 
and left ventricular dysfunction. In this context, the availability of 
glucose and the ability of cardiomyocytes and skeletal muscle to 
metabolize glucose are grossly reduced. Indeed, since a major factor 
in the development and progression of HF is already a reduced 
availability of ATP, glucose metabolism alterations could further 
impair the efficiency of cardiomyocytes to produce energy. By 
inhibiting fatty acid oxidation, trimetazidine stimulates total glucose 
utilization, including both glycolysis and glucose oxidation. The 
effects of trimetazidine on glucose metabolism could therefore be 
dependent by a) improved cardiac efficiency; b) improved peripheral 
glucose extraction and utilization. Finally, considering the known 
relation between ET-1 concentration and glucose metabolism 
abnormalities [38,39] the observed beneficial effects of trimetazidine 
on glucose metabolism could also be partly ascribed to the positive 
effect of the drug on ET-1 levels reduction [21].

Animal studies have also suggested that trimetazidine improves 
blood glucose utilization in rats with fasting hyperglycemia [46] 
and more recently, prevents obesity-induced cardiomyopathy [47]. 
On this ground, both forearm glucose and lipid metabolism and 
forearm release of endothelial vasodilator and vasoconstrictor factors 
have been evaluated during a prolonged inhibition of β-oxidation 
by trimetazidine in patients with post-ischemic left ventricular 
dysfunction. Trimetazidine increased both insulin induced-forearm 
glucose oxidation and forearm cyclic-guanosine monophosphate 
release, while forearm ET-1 release was decreased [48]. Although 
these findings need further confirmation, the peripheral effects of 
trimetazidine add a new therapeutic window in the treatment of 
patients with ischemic heart disease and type 2 diabetes.

Finally, insulin sensitization with metformin in diabetic patients 
with HF, has been shown to reduce all-cause mortality [49,50]. 
Nevertheless, due to the perceived risk of acidosis, metformin has been 
previously formally contraindicated in HF. At present, metformin is 
being seriously reconsidered as a useful antidiabetic agent in HF [51]. 

An exhaustive paper has reviewed the basic science evidence, 
animal experiments, and human clinical data supporting the existence 
of an “insulin-resistant cardiomyopathy” and, partly based on the 
above discussed literature, proposed specific potential metabolic 
approaches [52].

Metabolic approach to endothelial dysfunction: Endothelial 
dysfunction, a critical component in the progression of HF, may 
result from increased oxidative stress, secondary to activation of the 
adrenergic and the renin-angiotensin systems and to the production 
of inflammatory cytokines, which in turn contribute to endothelial 
dysfunction [53]. In HF, the role of reduced bioavailability of Nitric 
Oxide (NO) is still under debate [54,55], while increased ET-1 levels 
are a mainstay [56]. It has been recently observed that trimetazidine 
could reduce endothelin release in cardiac patients [21,57]. Growth 
factors, vasoactive substances and mechanical stress are involved in 
the ET-1 increase in HF patients. Despite the known adaptative aspect 
of supporting contractility of the failing heart, persistent increases in 
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cardiac ET-1 expression in the failing heart have a pathophysiological 
maladaptive aspect and are associated with the severity of myocardial 
dysfunction [58]. Trimetazidine-induced reduction of intracellular 
acidosis in ischemic myocardium could not only influence myocardial 
but also endothelial membranes [59]. By decreasing endothelial 
damage, trimetazidine could inhibit ET-1 release that, in turn, could 
decrease myocardial damage. A second hypothesis is that, by just 
decreasing the effects of chronic myocardial ischemia, trimetazidine 
could inhibit ET-1 release. Therefore, the observed decrease in ET-1 
release with trimetazidine, could likely be linked to trimetazidine-
induced reduction of myocardial ischemia. Finally, keeping in mind 
the close relation between endothelium and insulin sensitivity, the 
observed effects of trimetazidine on endothelial function could also 
explain the beneficial action of trimetazidine on glucose metabolism.

In the same context, the potential beneficial effect of six weeks 
oral L-arginine supplementation on endurance exercise, an important 
determinant of daily-life activity in patients with chronic stable HF, has 
been assessed [60]. L-Arginine is the precursor of endogenous Nitric 
Oxide (NO), which is potent vasodilator acting via the intracellular 
second-messenger cGMP. In healthy humans, L-arginine induces 
peripheral vasodilation and inhibits platelet aggregation due to an 
increased NO production. The results of this study show that arginine 
enhances endurance exercise tolerance, reducing both heart rate and 
circulating lactates, suggesting that chronic arginine administration 
might be useful as a therapeutic adjuvant in order to improve the 
patient’s physical fitness.

Effects of metabolic therapy on whole body energy 
metabolism of patients with heart failure

A higher resting metabolic rate has been observed in patients 
with HF [61-63] and this factor probably contributes to progressive 
worsening of the disease. Rate of energy expenditure is related to 
increased serum FFA oxidation and both energy expenditure and 
serum FFA oxidation are inversely correlated with left ventricular 
ejection fraction and positively correlated with growth hormone 
concentrations, epinephrine and norepinephrine [64]. Norepinephrine 
increases whole body oxygen consumption, circulating FFA 
concentrations, and FFA oxidation [65]. These changes have been 
attributed to stimulation of hormone-sensitive lipase in adipose tissue, 
and to stimulation of oxygen consumption independent of lipolysis 
by norepinephrine [66]. This data, together with close correlations 
between plasma norepinephrine concentrations, energy expenditure 
at rest and FFA oxidation, make increased sympathetic activity the 
most likely explanation for alterations in fuel homeostasis in patients 
with HF [66]. Therefore, intervention strategies aimed at optimizing 
global and cardiac metabolism, could be useful for interrupting the 
vicious circle of reduced function at greater metabolic expenses in 
different cardiac conditions [67]. In a recent study, it has been shown 
that 3 months treatment with trimetazidine added to usual treatment 
consistently reduces whole body resting energy expenditure (Figure 
4) along with improved functional class, quality of life and left 
ventricular function in patients with systolic HF, regardless of its 
etiology and diabetic status [68]. The observation that the beneficial 
effect of trimetazidine on left ventricular function is also paralleled by 
a reduction of whole body rate of energy expenditure when compared 
to patients on conventional treatment underlies the possibility that 
the effect of trimetazidine may be mediated through a reduction of 

metabolic demand at the level of the peripheral tissues and, in turn, 
in some sort of central (cardiac) relief. Therefore, reduction of whole 
body energy demand could be one of the principal mechanisms by 
which trimetazidine could improve symptoms and left ventricular 
function in patients with HF.

Systematic literature search on the beneficial effect of 
3-KAT inhibition in heart failure

A systematic literature search was conducted by Gao and 
Colleagues to identify randomised controlled trials of trimetazidine 
for HF [69]. They considered reports of trials comparing trimetazidine 
with placebo control for chronic HF in adults, with outcomes 
including all-cause mortality, hospitalisation, cardiovascular events, 
changes in cardiac function parameters and exercise capacity. The 
results of the search identified 17 trials with data for 955 patients. 
Trimetazidine therapy was associated with a significant improvement 
in left ventricular ejection fraction in patients with both ischemic 
(7.37%; 95% CI 6.05 to 8.70; p<0.01) and non-ischemic HF (8.72%; 
95% CI 5.51 to 11.92; p<0.01). With trimetazidine therapy, New York 
Heart Association classification was also improved (p<0.01), as was 
exercise duration (p<0.01). More importantly, trimetazidine had a 
significant protective effect for all-cause mortality (RR 0.29; 95% CI 
0.17 to 0.49; p<0.00001) and cardiovascular events and hospitalisation 
(RR 0.42; 95% CI 0.30 to 0.58; p<0.00001).

Finally, a recent meta-analysis has confirmed that additional use 
of trimetazidine in heart failure patients may decrease hospitalization 
for cardiac causes, improve clinical symptoms and cardiac function, 
and simultaneously ameliorate left ventricular remodelling [70].

Table 1 summarizes results on left ventricular function and other 
soft and hard endpoints from principal clinical trials of trimetazidine 
in HF. 

Altogether, this data confirm that trimetazidine might be 
an effective strategy for treating HF and that a large multicentre 
randomized controlled trial should be performed, in order to clarify 
its exact therapeutic role in this setting. 

Figure 4: Rate of energy expenditure in heart failure patients. Rate of 
energy expenditure (kcal/d) measured by indirect calorimetry at baseline 
and at 3-month follow-up in patients with heart failure recei ving conventional 
therapy alone (left histograms) or conventional therapy plus trimetazidine 
(right histograms).
Abbreviations: ns: Not Significant; TMZ: Trimetazidine
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Safety of 3-KAT inhibition 
Trimetazidine is registered as an anti-anginal drug. Its use in heart 

failure is at present an off-label indication. Trimetazidine is generally 
a safe and well tolerated drug. Recently, the European Medicines 
Agency (EMA) published a recommendation statement following a 
review of single reports series of movement disorders-related adverse 
events occurrence [71]. As a consequence, it is now suggested to 
discontinue trimetazidine in case of Parkinson symptoms, restless 
leg syndrome, tremors and gait instability occurrence. All these 
symptoms fully recovered after few months of discontinuation. Other 
contraindications only include severe renal failure and pregnancy. It 
has never been reported in any series an increased risk of mortality 
for patients undergoing trimetazidine, independently of underlying 
disease. 

Trimetazidine has been commercialized since the 1970s, firstly 
in Europe and subsequently in many countries outside Europe. 
European countries where it is approved are  Bulgaria, Cyprus, Czech 
Republic, Denmark, Estonia, France, Germany, Greece, Hungary, 
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Poland, 
Portugal, Romania, Slovakia, Slovenia and Spain. Many countries in 
Northern and Southern America, Asia and Africa have approved its 
use since decades.

Further aspects of metabolic therapy for heart failure
Metabolic effects of beta-blockers in heart failure: Lowering 

raised plasma triglycerides and FFA levels could be the first 
therapeutic option to decrease the heart’s reliance on fatty acids and 
overcome the fatty acid inhibition of myocardial glucose utilization. 
Indeed beta-blockers, by reducing peripheral lypolysis, should reduce 
FFA availability. Interestingly enough, a recent study has shown that 
one of the main effects of the beta blocker carvedilol is the reduction 
of FFA utilization in favor of greater glucose utilization in patients 

with stable NYHA functional class III HF [72]. This change in 
myocardial energetics could provide a potential mechanism for the 
decreased myocardial oxygen consumption and improved energy 
efficiency seen with ß-adrenoreceptor blockade in the treatment 
of HF. The issue of whether non selective, compared to selective 
ß-adrenoreceptor blockers, are more efficient in shifting total body 
substrate utilization from lipid to glucose oxidation [73] is still 
controversial [74]. Nevertheless, a better metabolic attitude of the 
former could be one of the reasons of better survival rates observed 
with their use [75]. Additionally, central inhibition of sympathetic 
nervous activity with moxonidine in HF has been associated with 
increased mortality [76]. In fact, despite a significant reduction of 
cathecolamine spillover, moxonidine has been shown to increase FFA 
utilization and increase myocardial oxygen consumption [77]. This 
could be the reason for the failure of central sympathetic inhibition 
to prevent deaths in long term studies in patients with HF and also 
indicates that the predominant mechanism of action of beta-blockers 
is probably related to their peripheral antilypolytic action.

Other inhibitors of fatty acids oxidation: Etomoxir, perhexiline 
and oxfenicine are Carnitine Palmitoyl Transferase I (CPT-I) 
inhibitors. CPT-I is the key enzyme for mitochondrial FFA 
uptake; its inhibition, therefore, reduces FFA oxidation and their 
inhibitory effect on pyruvate dehydrogenase. As a consequence, 
glucose oxidation is increased [78,79]. Etomoxir, initially developed 
as an antidiabetic agent, has then been observed to improve left 
ventricular performance of pressure-overloaded rat heart [80]. These 
effects have been considered due to a selective modification of gene 
expression of hypertrophic cardiomyocytes [81]. Etomoxir could also 
increase phosphatase activation, have a direct effect on peroxisome 
proliferator activated receptor-alpha and up-regulate the expression 
of various enzymes involved in beta-oxidation [81]. The first clinical 
trial employing etomoxir in HF patients has shown a significant 

Trial Study design Number of 
patients Follow up Mean EF 

improvement Other endpoints

Brottier et al, 
[18] Vs placebo 20 6 months 9.3% (p< 0.018) Improvement of dyspnea

Fragasso et 
al, [21] Vs placebo 16 a)15 days

b)6 months
a)5.9% (p<0.001)
b)8.5% (p<0.001)

Improvement of left ventricle end-sysytolic and end-dyastolic 
diameters and volumes

Rosano et al, 
[22] Vs placebo 32 6 months 5.4% (p<0.05) Improvement of end-diastolic diameters, wall motion score index 

and E/A wave ratio

Vitale et al, 
[23] Vs placebo 47 6 months 7.4% (p<0.0001)

Improvement of left ventricle end-sysytolic and end-dyastolic 
diameters and volumes, wall motion score index, NYHA class 

and quality of life

Di Napoli et al, 
[24]

Vs conventional therapy 
alone 61

a) 6 months
b)12 months
c)18 months

a)2% (p<0.001)
b)10% (p<0.001)
c)11% (p<0.001)

Improvement of NYHA class, end-sysytolic and end-dyastolic 
volumes

Fragasso et 
al, [31] Vs placebo 12 3 months 5% (p=0.003) Improvement of cardiac PCr/ATP ratio, NYHA class and 

metabolic equivalent system
Fragasso et 

al, [33]
Vs conventional therapy 

alone 55 13 +/- 3 
months 7% (p = 0.002) Improvement of NYHA class and end-systolic volume

Sisakian et al, 
[25]

Vs conventional therapy 
alone 82 3 months 3.5% (p=0.05) Improvement of tolerance to physical activity on 6 minutes 

walking test

Fragasso et 
al, [37]

Retrospective, vs 
conventional therapy 

alone
669 5 years n.a.

Improvement of global survival, survival  for cardiovascular 
death, hospitalization-free survival and reduction of 

hospitalization for cardiovascular causes

Gao et al, [69] Meta-analyses 955 -

- 7.37% (p<0.01) 
(ischemic HF)

- 8.72% (p<0.01) (non-
ischemic HF)

Reduction of all-cause mortality, cardiovascular events and 
hospitalizations; improvement of exercise duration and end-

systolic volume

Zhang et al, 
[70] Meta-analyses 884 - 6.46% (p<0.0001)

Reduction of hospitalization for cardiac causes; improvement of 
total exercise time, NYHA class, B-type natriuretic peptide levels 

and end-systolic and end-diastolic diameter

Table 1: Results from principal clinical trials of trimetazidine in systolic heart failure patients.

Abbreviation: ATP: Adenosine Triphosphate; HF: Heart Failure; NYHA: New York Heart Association; PCr: Phosphocreatine
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clinical and cardiac function improvement [82]. In experimental 
animal studies, etomoxir has also been shown to improve glucose 
metabolism [83]. However, the use of etomoxir may be limited by 
the observation that it may cause cardiac hypertrophy [84], oxidative 
stress [85] and increase liver transaminase levels [86].

Analogously to etomoxir, oxfenicine and perhexiline, originally 
classified as calcium antagonists, reduce cardiac utilization of long 
chain fatty acids by inhibiting CPT-I [87-90]. They have been initially 
developed as antianginal agents [90,91]. However, they have been 
recently employed in patients with HF. Metabolic modulation with 
perhexiline has been shown to improve O2 max, left ventricular 
ejection fraction, symptoms, resting and peak stress myocardial 
function, and skeletal muscle energetics [92]. Therefore, similarly to 
3-KAT inhibitors, CPT-I inhibitors may represent a novel treatment 
in patients with HF with a good safety profile, provided that the 
dosage is adjusted according to plasma levels. In fact, perhexiline 
should be used with caution because of reports of hepatotoxicity and 
peripheral neuropathy [93,94].

Other drugs: L-carnitine is an essential cofactor of fatty 
acid metabolism, shuttling the end-products of peroxisomal 
fatty acid oxidation into the mitochondria and modulating the 
intramitochondrial acyl-coenzyme A/coenzyme A ratio. Although 
its main role is enhancement of FFA metabolism, experimental 
evidence also supports an enhancement of glucose metabolism. 
Several human and animal studies support a modest benefit in left 
ventricular energetics and function with L-carnitine administration 
[95-97]. Administration of the related propionyl-L-carnitine to the 
injured rat myocardium results in improved functional recovery and 
glucose use, supporting the theory that L-carnitine’s beneficial effects 
are due to its ability to increase glucose oxidation despite elevated 
FFA levels [95,97].

Ranolazine is a piperazine-derivate drug registered in Europe, 
Asia and USA for the treatment of chronic stable angina. Ranolazine 
exerts its anti-anginal effect mainly through the modulation of the late 
sodium current, thereby reducing the accumulation of intracellular 
Ca2+. Ranolazine is able to modulate other intracellular ionic currents 
thus also exerting an anti-arrhythmic effect. For the same reason, 
however, the drug has also a pro-arrhythmic activity; in fact one of 
the most dangerous side effects associated with the administration of 
ranolazine is the QT interval elongation. For this reason strict ECG 
monitoring is indicated in patients receiving ranolazine [98]. 

The anti-anginal efficacy and safety of ranolazine in diabetic 
and non-diabetic patients included in the Combination Assessment 
of Ranolazine In Stable Angina (CARISA) trial [99] were studied. 
Glycaemic control was also assessed in CARISA and its long-term 
open-label extension study. The anti-anginal efficacy and safety of 
ranolazine for angina were similar between diabetic and non-diabetic 
patients.

It has also been observed that ranolazine administration results 
in partial inhibition of free fatty acids oxidation, thus increasing the 
rate of glucose oxidation in the isolated rat heart, [100] even though 
the concentrations needed for metabolic action are greater than those 
achieved with normal therapeutic doses (100 mmol/l vs. 10 mmol/ 
l) [98].  Nevertheless, the MERLIN-TIMI 36 trial has demonstrated 

the efficacy of ranolazine in reducing one year mortality in patients 
with acute coronary syndrome and subsequent heart failure (BNP 
values rising   > 80 pg/ml) [101]. Further analysis of the Merlin-TIMI 
36 data has also shown that ranolazine improves glycemic control in 
patients with acute coronary syndrome and no ST elevation [102]. 
Additionally, ranolazine significantly improved glycaemic control 
in diabetic patients [103] confirming that, apart from their primary 
cardiac action, this class of drugs yields also this important ancillary 
effect on glucose metabolism. Future studies will clarify the potential 
role of ranolazine as a metabolic modulator in patients with heart 
failure and diabetes.

In a very recent study, spironolactone has been attributed with 
direct metabolic effects on myocardium apart from its specific 
anti-aldosterone activity. Twelve patients with nonischemic dilated 
cardiomyopathy underwent a ≥6 months spironolactone therapy 
added to a standard HF regimen; the Work Metabolic Index (WMI), 
an index of left ventricle mechanical efficiency, and kmono/RPP (rate-
pressure product), an index of energy supply/demand, were assessed 
through [11C] acetate Positron Emission Tomography (PET), at 
baseline and after spironolactone. The WMI increased (P=0.001), 
as did kmono/RPP (P=0.003). These improvements were associated 
with reverse remodeling, increased left ventricle ejection fraction, 
and decreases in LV mass and systolic wall stress (all P<0.002). 
These effects cannot however be fully ascribed to a direct metabolic 
action of the drug. In fact, its unloading diuretic effect associated 
to antifibrotic properties, could well be the reasons of the observed 
improved myocardial metabolism [104].

Xantine oxidase inhibition could also play a role. The mechanisms 
responsible for mechanoenergetic uncoupling are unknown, 
although experimental evidence suggests that reactive oxygen species 
may play a major role. Markers of reactive oxygen species accumulate 
in HF patients [105-106], indicating that HF is a state of oxidative 
stress [107]. Although there are several potential sources of reactive 
oxygen species, increased levels of uric acid in the serum of HF 
patients suggest that Xanthine Oxidase (XO) activity contributes 
[108]. XO inhibition with allopurinol improves myocardial efficiency 
[109] and enhances the contractile response of failing myocardium to 
dobutamine and to exercise in animal [110] and human [111] models 
of HF. Because XO inhibitors have a well-established safety profile 
and are used widely for the treatment of gout, they have the potential 
to be rapidly tested as a novel metabolic therapy for the treatment of 
human HF.

Mitochondrial metabolic oxidants: coenzyme Q and lipoic acid: 
Coenzyme Q (CoQ) does not serve as a coenzyme in mitochondrial 
oxidation, despite its name. Lipoic acid is a cofactor of the pyruvate 
dehydrogenase enzyme system. The presence of these molecules 
indicates that mitochondria can defend themselves against harmful 
effects of the oxygen atmosphere [112-114]. Coenzyme Q, also called 
ubiquinone or ubidecarenone, in its reduced form is an excellent 
antioxidant. The name “ubiquinone” also indicates that it can occur 
in various places. The endogenous coenzyme Q can capture perferril, 
carbon-centred lipids, lipid-peroxyl and alkoxyl radicals. 

Coenzyme Q has been shown to be beneficial due to its inhibitory 
effect on lipid peroxidation and on the oxidation of endogenous 
coenzyme Q-9 as well as by improving mitochondrial respiration 
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[114,115]. Recently, oral CoQ10 has been shown to improve functional 
capacity, endothelial function, and left ventricular contractility in 
patients with HF without any side effects [116]. Despite anecdotical 
evidence to support the therapeutic value of CoQ10 as an adjunct to 
standard medical therapy in congestive HF, much further research 
is required, especially to assess functional outcomes in patients with 
congestive heart failure [117,118].

Lipoic acid is synthesized both in the animal and in the human 
body [119]. This fatty acid with eight carbon atoms containing 
disulphide groups at the sixth and eighth carbon atoms closed in 
a pentamerous ring is essential for the function of mitochondrial 
pyruvate dehydrogenase. Both lipoic acid and its reduced form are 
excellent metabolic antioxidants, as they take part in the antioxidant 
redox cycle of the organism. Despite the potential beneficial effects 
of lipoic acid on myocardial metabolism, there are not yet studies 
showing its beneficial effects in heart disease.

Other micronutrients: Apart from defects in substrate 
metabolism and cardiac energy and substrate utilization, HF is 
often accompanied by a deficiency in key micronutrients required 
for unimpeded energy transfer. Correcting these deficits has been 
proposed as a method to limit or even reverse the progressive 
dysfunction in HF. A recent review has summarized the existing 
literature with respect to supplementation trials of key micronutrients 
involved in cardiac metabolism [120]. Although some of the results 
are promising, none are conclusive. There is a need for a prospective 
trial to examine the effects of micronutrient supplementation on 
morbidity and mortality in patients with HF.

Conclusion
Metabolic therapy could have an important role in the 

therapeutic strategy of patients with HF. In several small studies, 
shifting the energy substrate preference away from FFA metabolism 
and toward glucose metabolism has been shown to be an effective 
adjunctive treatment in patients with HF, in terms of left ventricular 
metabolism and function improvement. At present trimetazidine, a 
partial FFA oxidation inhibitor, appears as the most promising agent 
for the metabolic approach to HF. All principal clinical trials were 
conducted with addition of trimetazidine on top of conventional 
therapy, which included neuro-hormonal counter-regulatory drugs. 
This provides evidence that metabolic therapy efficiently works in 
cooperation with established therapeutic strategies. Although highly 
suggestive, whether the observed benefits would definitely translate 
into improved survival should be ascertained by a multicenter trial 
[121-123]. Time has come to test this huge potential therapeutic 
advancement in HF syndromes, which still suffer very high morbility 
and mortality rates. 

Additionally, most cardiac diseases are associated to abnormalities 
of glucose homeostasis, which definitely contribute to the progression 
of the primary disease. If not adequately treated, in most cardiac 
patients glucose metabolism abnormalities will heavily contribute 
to the occurrence of complications, of whom severe left ventricular 
dysfunction is at present one of the most frequent and insidious. 
Apart from a meticulous metabolic control of frank diabetes, special 
attention should be also paid to insulin resistance, a condition that is 
generally under-diagnosed as a distinct clinical entity. The observed 
combined beneficial effects of FFA inhibitors on left ventricular 

function and glucose metabolism, represent an additional advantage 
of these drugs, especially in those cardiac patients in whom myocardial 
and glucose metabolism abnormalities coexist. 

Overall, currently available data state that although the sub-
population of HF patients with abnormal glucose metabolism and 
with ischemic heart disease or both may take the major advantage 
from trimetazidine use, actually a great clinical benefit has been 
observed in HF independently from comorbidities or aetiology and 
therefore it could be administered to all patients as an adjunctive 
drug on top of optimized therapy according to current guidelines. 
Nevertheless, we recognize the higher amount of evidence regarding 
these two subtypes of HF patients and therefore we feel that especially 
in these cases trimetazidine should be considered as a first-line 
additional medication.
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