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Abstract
Synovial Sarcoma (SS) is a rare and aggressive form of soft tissue sarcoma 

(STS) with a high metastatic potential that is characterized by a unique 
translocation between SYT on chromosome 18 and SSX on chromosome 
X. Presently, standard of care involves surgery, radiation therapy and 
chemotherapy. For those patients with metastatic disease, standard of care 
remains enrollment in a clinical trial. While there are numerous open clinical 
trials for the treatment of STS in general, clinical trials designed specifically for 
SS remain limited. The overall low response rate to cytotoxic chemotherapies 
has necessitated the need for development of pathway-specific targeted 
therapies for SS.  Deregulation of several cell signaling pathways have been 
identified in SS, including the SRC, Bcl-2, and MDM2 signaling pathways, 
which are involved with cell growth, apoptosis, and p53 regulation, respectively. 
Additionally, several potential enzymatic targets have been identified, including 
argininosuccinate synthetase 1 and histone deacetylases. Here we present an 
updated review of the current therapy and the prospective molecular therapeutic 
targets that are available for clinical trial development in SS.  
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the sole therapeutic option off-trial. Unfortunately, the prognosis 
for patients presenting with metastatic disease remains poor, with 
a median time to cancer-specific death ranging from 10-22 months 
[1]. These findings highlight the need for more effective, less toxic 
systemic therapies for SS. In 2005, a well written work by Fukukawa et 
al. [4] analyzed several genes up-regulated in SS and postulated upon 
putative molecules for the development of novel therapies to treat SS 
[4]. Here, almost 10 years later, we present an updated review of the 
prospective molecular therapeutic targets for the treatment of SS. 

Synovial Sarcoma Biology
Genetics /translocation biology

SS harbors a pathognomonic chromosomal translocation t(x;18) 
(p11.2;q11.2) that results in a fusion between the SYT gene on 
chromosome 18 and one of three homologous genes (SSX1, SSX2, 
SSX4) on the X chromosome (Figure 1). The SYT-SSX translocation 

Introduction
Synovial Sarcoma (SS) is a rare and aggressive form of soft 

tissue sarcoma (STS) with a high metastatic potential that frequently 
develops in young people between the ages of fifteen and forty [1,2]. 
The incidence of SS is estimated at 900-1000 cases per year in the 
United States and it accounts for 8-10% of the soft tissue sarcoma 
patient population. Though SS is not associated with an identifiable 
etiologic agent or genetic predisposition, it has been associated 
with a gene fusion product between transcription factors SYT and 
SSX1, SSX2, or SSX4. This translocation has been identified in 90-
95% of all SS, and is pathognomonic and diagnostic for the disease 
[3]. Currently, the standard therapeutic approach to local primary 
disease and locally recurrent disease relies upon aggressive surgical 
resection, with neoadjuvant or adjuvant radiation and chemotherapy. 
However, in a majority of metastatic SS cases, clinical trial enrollment 
remains the standard of care with systemic chemotherapy remaining 
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Figure 1: The SS translocation between the SYT transcriptional activator on chromosome 18 (Top Left) and the SSX transcriptional repressor located on the X 
chromosome (Top Right), specifically the translocation t(X;18) (p11.2;q11.2) (Bottom). The possible chromosomal rearrangements causing SS tumor genesis are 
SYT-SSX1, SYT-SSX2, and rarely SYT-SSX4.
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has been identified in approximately 95% of SS, and is the only 
cytogenetic abnormality in one-third of cases [3]. Most cases of 
SYT-SSX translocation associated SS harbor a fusion between SYT 
and SSX1 or SSX2, up to 10% of cases carry both translocations, and 
only rare cases carry the SYT-SSX4 translocation [5]. The anatomy 
of this SYT-SSX fusion oncogene has been extensively studied to 
better understand its pathogenicity, and it has been linked to aberrant 
E-cadherin repression, over expression of Bcl-2, and down-regulation 
of Mcl1 [6,7].

The SYT gene, also reported in the literature as SS18 or SSXT, 
is located on chromosome 18q11 and encodes a 387-amino acid 
protein. SYT is evolutionarily conserved and thought to function 
as a housekeeping gene given the presence of CpG islands and the 
absence of TATA elements in the promoter region [8]. The 54-amino 
acid N-terminal domain of SYT, referred to as the SNH domain, is 
believed to interact with SWI/SNF to alter chromatin remodeling 
and gene expression. SWI/SNF is a multi protein complex which 
counteracts repression by way of chromatin structural proteins such 
as histones and the polycomb-group of proteins (Figure 2) [8-11]. 
The C-terminal domain of SYT is rich in glutamine, proline, glycine, 
and tyrosine and is referred to as QPGY domain; it may function as 
a transcriptional activation domain on the basis of its similarity to 
corresponding domains in other transcriptional regulators [11].

The structure of SSX contains two major domains found in both 
SSX1 and SSX2; the N-terminal Kruppel-associated box (KRAB) 
domain, and the C-terminal dominant repressor domain SSX-RD 
[11-12]. The SSX-RD domain is the most highly conserved region of 
the protein among the various SSX1, SSX2, and SSX4 translocations. 
It is also believed to be required for the nuclear co-localization with 
the polycomb-complex that function to repress transcription through 
modification of higher-order chromatin structure [13]. 

The chimeric transcript in SS replaces the 5’ portion of SSX with 
all but the eight C-terminal amino acids of SYT, but these eight 

amino acids do not appear to affect trans activation by the SYT QPGY 
domain. Together, the SYT-SSX fusion protein, in the SYT-QPGY 
and SSX-RD domains, displays both transcriptional activating and 
repressing domains, thus complicating hypotheses surrounding the 
oncogenicity of SYT-SSX [11]. Several studies have since demonstrated 
that the fusion protein is essential for tumor cell survival. Knockdown 
of the SYT-SSX1 protein decreases cell viability in SS; this finding 
of decreased viability is likely secondary to an increase in apoptosis 
[14-16]. Furthermore, re-introduction of a deleted exon 8 sequence 
into novel, patient-derived SS cell lines resulted in a decrease in cell 
viability as well, indicating that this splicing variant is important for 
the survival of SS [15]. 

Current Management

Although SS may develop at any anatomic site, they are found in 
the extremity in approximately 80% of cases, with lower extremities 
accounting for approximately 70% of cases [17]. In eight, seven, and 
five percent of cases, SS arise within the trunk, retroperitoneum/
abdomen, and head/neck, respectively [18]. Cases in the extremities 
may predominantly involve the very distal aspect of either the hand/
wrist or the foot/ankle and are often noted to be a palpable, slowly 
growing, and sometimes painful mass in the particular region of the 
joint. They rarely involve the actual joint, and, despite their name, 
are not associated with synovial tissue. Because of slow growth and 
insidious onset, there may be a delay in diagnosis, with one study 
citing an average of 2.5 years of symptomatology before patients 
sought medical care [19]. Once metastatic, SS are recognized to 
invade both locally at the primary site and distantly to the lungs and 
other sites. Intriguingly, SS has been shown to have a higher risk for 
lymph node metastases, with an incidence of 10-12% compared to 
approximately 3-5% for STS in general [20].

However, although there have been many published studies 
investigating the natural history of the disease, it has been difficult to 
draw clear conclusions in regards to the prognostic factors, treatment 

Figure 2: The SYT-SSX fusion protein alters gene expression level by modifying chromatin structure. The fusion protein associates with the SWI/SNF complex 
toaltersepigenetic regulation of a large subset of genes. Differential expression levels can be the result of deregulated histone methylation, acetylation, promoter 
methylation, or a number of other epigenetic mechanisms.
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outcomes, and survival statistics of SS in adults. This is most likely 
secondary to the rare incidence of the disease itself, the inclusion of 
children/adolescents in some retrospective studies, and variations in 
surgical and medical treatments. Although SS is viewed as moderately 
sensitive to chemotherapy, the 5-year distant recurrence rates, 
5-year survival, and 10-year survival rates remain at 39%, 60% and 
34%, respectively [1]. In 2000, Lewis et al published a retrospective 
analysis of 112 patients with localized primary extremity SS treated at 
Memorial Sloan-Kettering Cancer Center. These patients underwent 
surgical excision with curative intent, with only 22% requiring 
amputation. Chemotherapy and radiation therapy was administered 
only to 37% and 46% of patients, respectively, although treatment 
was not standardized. The 5-year recurrence rate was noted to be 39% 
in this cohort, with a majority of recurrences occurring in the lungs. 
In total, at 5 years, tumor related mortality was 25% for patients 
with primary extremity SS [21]. In regards to timing of recurrence, 
Singer et al in 1996 recognized a high rate of late metastasis, noting 
a 5-year survival rate of 60% and a 10-year survival rate of just 34%, 
with almost half of the disease-specific deaths occurring between 5 
and 10 years [2]. Also, in those studies that have included patients 
with metastatic disease at the time of presentation, the median time to 
cancer-specific death ranges from 10-22 months [1,22]. 

Prognostic factors of disease-specific survival identified in 
multiple studies include age, size of tumor, margin status at resection, 
mitotic activity, bone or neurovascular invasion, histological subtype, 
p53 expression, Ki67 proliferative index, and SYT-SSX fusion type. 
Lesion size at presentation is variable, although most patients present 
with tumors larger than five centimeters. Those tumors that present 
at the periphery of a limb, for example, may be diagnosed earlier at a 
smaller size, although the rarity of the tumor and physical similarity 
to benign lesions may still result in a delay in diagnosis. In particular, 
large primary tumor size has consistently been associated with 
development of distant metastasis and decreased disease-specific 
survival [18]. Computed topography (CT) typically demonstrates 
a non infiltrative, well-circumscribed mass often with punctuate 
peripheral calcifications, although MRI is the modality of choice for 
diagnosis and initial staging of SS [23,24]. 

Pathological 

Immunohistochemical and structural characteristics of SS cells 
are clearly different than those of synovial cells. SS have primarily been 
considered a high-grade tumor by definition, although some groups 
in Europe and Asia may classify SS as either high-grade or low-grade 
[25,26]. Morphologically, SS tumors can be composed of two distinct 
cell types in varying proportions. Each tumor typically consists 
of spindle cells and/or epithelioid cells, allowing for classification 
into three histologic subtypes: monophasic, biphasic, and poorly 
differentiated (Figure 3) [27,28]. The spindle cell component of 
a tumor consists of small, uniform, and ovoid cells with sparse 
cytoplasm and understated pale nuclei and nucleoli. The monophasic 
histologic subtype of SS tumors display primarily spindle cells with 
rare if any epitheiloid cells, arranged in intersecting fascicles with 
a hemangiopericytoma-like vascular pattern that often includes 
calcifications. Two-thirds of cases are of monophasic subtype [19].

In contrast, biphasic tumors consist of both spindle and 
epitheliod cell types, with the epithelioid component displaying cells 

with abundant cytoplasm and ovoid nuclei that often form glandular 
structures. The epithelioid component, when in glandular formation, 
displays features typical of adenocarcinoma; for example, lumina-
containing epithelial mucin or papillary structures [27]. When 
monophasic tumors display the epithelioid subtype, cytogenetic 
analysis is usually required for diagnosis, as these tumors can be 
otherwise indistinguishable from adenocarcinoma [29]. Finally, 
the poorly differentiated histologic subtype of SS can be difficult to 
distinguish from other high-grade small-cell tumors, as they display 
rhabdoid features, dense cellularity, numerous mitotic figures, and 
areas of necrosis that canbe extensive [30].

Often, SS can be difficult to diagnose with routine histologic 
examination. Approximately 90% of tumors are cytokeratin-positive, 
with the epithelioid cell type staining stronger than the spindle cell 
type. Although SS are histologically similar to other spindle cell 
sarcomas, they stain positive for cytokeratin 7 and 19, which allows 
for reliable distinction between SS and primitive neuroectodermal 
and malignant peripheral nerve sheath tumors [31, 32]. Epithelial 
membrane antigens, which are expressed in SS but not in other 
spindle cell sarcomas, and Bcl-2, which is upregulated in SS, may also 
assist in immunohistochemical staining for diagnostic purposes [32]. 
Additionally, SS tumors stain positive for vimentin, supporting the 
hypothesis that SS cells are derived from multipotent stem cells of 
a mesenchymal and/or epithelial origin, rather than from synovial 
tissue as their moniker would suggest [33]. 

Molecular/Cytogenetic diagnosis

As SS can be difficult to diagnose through current clinical and 
histopathologic analysis, molecular testing should also be performed 
in cases with low to moderate clinical suspicion of SS [18]. Most 
biphasic tumors contain SS18-SSX1 while almost all tumors with 
SS18-SSX2 are monophasic. However, monophasic tumors have 
an equal chance of containing either SS18-SSX1 or SS18-SSX2 

Figure 3: Left column demonstrates monophasic synovial sarcoma at 200X 
(Top) and 600X (Bottom).  Right column demonstrates biphasic synovial 
sarcoma at 200X (Top) and 600X (Bottom).  E marks the epithelial component 
and S marks the spindle component of the biphasic SS.
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[34]. A tumor with a SS18-SSX translocation may be diagnosed via 
fluorescence in situ hybridization (FISH) or reverse transcriptase-
polymerase chain reaction (RT-PCR) [29]. These diagnostic 
modalities may be performed on frozen or paraffin-embedded clinical 
samples [35,36,37]. 

Current Therapy
Surgery 

The foundation for treatment of STS, as well as SS, is complete 
surgical resection with wide margins [18]. Standard of treatment 
dictates that non-curative surgery, such as an intra-lesion resection 
or incomplete gross resection should not be offered or attempted. As 
SS are most commonly diagnosed in an extremity and in proximity 
to a joint, careful dissection of tissue planes and neurovascular 
structures is necessary. Fortunately, it is uncommon that amputation 
of an extremity is required as primary surgical therapy [19]. Of those 
patients who undergo surgery for locally recurrent disease, limb-
sparing surgery is possible for the majority of patients, although 
greater morbidity involving critical structures like nerves, veins, 
arteries, or even bone may be expected [19]. Even in cases involving a 
limb, amputation is still considered a last resort [38]. 

Surgical therapy for patients with metastatic disease requires 
careful patient selection to ensure benefit; considerations include 
patient performance status, extent of disease burden, disease-free 
interval, and response to systemic chemotherapy. For those patients 
with pulmonary metastasis, complete resection has been shown to 
improve survival [39].

Radiation therapy

Radiation therapy has been employed for SS in the neoadjuvant 
and the adjuvant setting. Preoperative radiation therapy in the form 
of external beam radiation is used to reduce tumor size at resection, 
but is associated with reduced dose, smaller fields, and a higher risk 
of long-term wound complications [19]. Radiation is typically used 
in the adjuvant setting for patients with tumors over five centimeters 
or for areas where local tumor control may be difficult, as in the head 
and neck. At this time, the use of concurrent systemic chemotherapy 
and radiation is investigational [19].

In patients who experience local recurrence, the re-irradiation of a 
site is typically not feasible, as those patients have received maximum 
radiation dosage to that site. However, the use of brachytherapy may 
be possible with minimal morbidity in patients with prior radiation. 
A group at Memorial Sloan-Kettering Cancer Center has reported the 
largest experience with the use of brachytherapy and interstitial after 
loading brachytherapy. In a study investigating the local control of 
surgery and brachytherapy compared to surgery alone, local control 
was 95% versus 54%, significantly higher in those who received 
brachy therapy [40]. In a study from 1990, Nori reported an overall 
5-year actuarial local control of 68% with the use of interstitial 
brachytherapy; however, this study included patients with various 
types of recurrent sarcomas who experienced varying numbers of 
recurrences [41]. 

Chemotherapy 

SS are considered to be moderately chemotherapy sensitive, and 
are among the more chemotherapy sensitive STS. Anthracycline-

based chemotherapy employing doxorubicin was the first 
chemotherapy agent to display activity against SS, although response 
rates of doxorubicin combinations approach 45% at 10 years, there 
is no statistically significant difference in overall survival noted 
compared to sequential therapy [42]. 

For those patients who present with metastatic disease, clinical 
trial enrollment is considered the standard of care. For the treatment of 
metastatic disease off trial, ifosfamide, anthracyclines and pazopanib 
are the most active agents. Some physicians choose to increase the 
dose of ifosfamide in the setting of recurrence if the patient has been 
previously treated with an ifosfamide regimen [19]. 

Pazopanib is an oral angiogenesis inhibitor that targets vascular 
endothelial growth factor receptors (VEGFRs), platelet-derived 
growth factor receptors (PDGFRs), and c-kit. In a phase II study 
from the European Organization for Research and Treatment of 
Cancer-Soft Tissue and Bone Sarcoma Group (EORTC Study 62043) 
in which 37 SS patients were enrolled [43], progression free rate at 
twelve weeks of treatment was reported as the primary end point, 
and 49% of patients with SS demonstrated stable disease. In 2012, a 
multi-center phase III study also designed by EORTC, 369 patients 
with angiogenesis inhibitor-naive, metastatic STS, progressing 
despite previous standard chemotherapy, were randomly assigned 
to receive pazopanib or placebo. Median progression-free survival 
for SS patients was longer for pazopanib compared with placebo (4.1 
months versys 0.9 months) [44].

Current Clinical Trials

As no targeted therapy for SS has yet to be developed, enrollment 
in clinical trials is recommended as standard of care at this time. For 
patients newly diagnosed with all subtypes of STS, there are many 
clinical trials enrolling at this time. The number of open clinical 
trials specific to SS, however, remains limited. A phase I study of 
genetically engineered NY-ESO-1 specific (c259) T cells in HLA-A2+ 
patients with SS opened, with the purpose of testing the effects of 
chemotherapy and the NYESO T cells on patients with metastatic and 
recurrent SS [45]. 

The potential of NY-ESO-1 as a cancer therapeutic target relies 
on the concept of specific immune recognition of cancer, and the 
subsequent development of an anti-cancer response. The NY-ESO-1 
gene is found on the X chromosome at q28, and it codes for several 
products, namely NY-ESO-1, a 180-amino acid protein. Expression 
pattern analysis by RT‐PCR for NY‐ESO‐1 has confirmed that the 
protein in normal tissue is restricted to testis, but found frequently in 
cancer. The function of the protein is yet to be determined; however, 
the presence of NY-ESO-1 is noted in one-third to one-fourth of 
all melanoma, lung, esophageal, liver, gastric, prostate, ovarian, 
or bladder cancers [46]. Strikingly, approximately 80% of SS have 
been found to express NY-ESO-1 [47], which holds promise for 
immunotherapeutic approaches such as NY-ESO-1 specific T cells 
as noted above. In this phase I study, the primary outcome measure 
is to determine whether the administration of T cells genetically 
engineered to recognize a peptide derived from NY-ESO-1 in 
HLA-A2+patients demonstrate a response rate consistent with that 
observed using similar NYESO-1 specific T cells plus aldesleukin 
in patients with SS. This trial is open to patients who are HLA-A2+ 
with SS that have been treated with standard chemotherapy with 
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remaining measurable disease that is metastatic, progressive/
persistent, recurrent, or unresectable. In September of 2013, the NCI 
opened a second clinical trial for enrollment involving NY-ESO-1 in 
order to determine whether the administration of anti-ESO mTCR-
engineered peripheral blood lymphocytes plus high-dose aldesleukin 
following a non-myeloablative lymphoid depleting regimen will result 
in objective tumor regression in patients with metastatic cancers that 
express the ESO antigen, including SS [45].

Onco Therapy Science Inc, opened a clinical trial in France 
for patients with histologically confirmed progressive SS that is 
resistant to doxorubicin and ifosfamide in order to investigate a 
chimeric humanized monoclonal antibody against FZD10, named 
OTSA101. The gene encoding frizzled homologue 10 (FZD10), a 
7-transmenbrane receptor and member of the Wnt signalling receptor 
family, is overexpressed in SS and is undetectable in normal human 

tissues except placenta. Non-radio labeled OTSA101 antibody has 
only weak antagonistic activity on SS cell growth in vivo. However, 
Yttrium 90-radiolabeled OTSA101 (OTSA101-DTPA-90Y) showed 
significant antitumor activity following a single intravenous injection 
in mouse xenograft model. This study should allow for definition of 
the optimal recommended dose of this novel monoclonal antibody 
therapy [48].

Molecular Targets for Clinical Trials

SRC: c-SRC (SRC) is a non-receptor tyrosine kinase involved in 
regulation of cell growth, survival, and motility [49]. The kinase has 
two phosphorylation sites, with phosphorylation of Tyr527 reducing 
kinase activity, and autophosphorylation of Tyr416 inducing full 
kinase activity [50,51]. SRC phosphorylation at Tyr527 is regulated 
by c-SRC tyrosine kinase (CSK) and the protein tyrosine phosphatase 
PTP1B [52,53]. Deregulation of CSK, as well as overexpression 

Figure 4: A schematic of the possible therapeutic targets for SS. Reliance upon SRC signaling suggests inhibition of upstream receptor tyrosine kinases as well 
as SRC itself can provide therapeutic benefits. The epigenetic silencing of ASS1 can be targeted via depletion of extracellular arginine. As SS utilizes Bcl-2 over 
expression in order to increase resistance to apoptosis, targeting with Bcl-2 inhibitors will induce apoptosis in tumor cells. MDM2 amplification causes p53 poly-
ubiquitination and proteasomal degradation, thus inhibition of the MDM2-p53 interaction can increase downstream p53 signaling. Lastly, inhibition of HDACs has 
been shown to increase expression of tumor suppressor genes silenced via histone deacetylation.
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of PTP1B, have been shown to be critical in a number of cancers, 
including colon cancer and breast cancer [54-56]. SRC has also 
been shown to interact with a number of receptor tyrosine kinases, 
including insulin like growth factor-1 receptor (IGF-1R), and 
effectors of the PI3K/AKT, RAS/MAPK, and STAT3 pathways. SRC 
interaction with focal adhesion kinase (FAK), various integrins, and 
regulators of the Rho-GTPases allows regulation of cellular migration 
[57-61].

Deregulation of SRC signaling is crucial for growth and survival 
of SS cells. SRC Tyr416 phosphorylation has been shown to be one of 
the strongest phosphorylated kinases in SS cell lines [49]. The high 
level of Tyr416 phosphorylation is induced by the SS translocation 
SYT-SSX, which has been shown to up-regulate IGF-1R, EGFR, and 
Her2 signaling [58,62-64].

The SRC inhibitor dasatinib has been shown to inhibit growth 
in SS cell lines, as well as increase apoptosis and decrease the 
mitotic rate in SS cells. Combination of dasatinib with conventional 
chemotherapy drugs has shown additive effects in SS cell lines [49].  
Inhibitors of IGF-1R, EGFR, or Her2 signaling may also be suitable 
targeted therapies for SS due to their ability to decrease SRC signaling 
(Figure 4). 

Bcl-2: The Bcl-2 protein family is important in regulation of 
apoptosis, and frequently found to be mutated in a number of 
cancers. Bcl-2 is one of the antiapoptotic members of the family, 
along with Mcl-1, Bcl-xl, and a number of other proteins [65,66]. The 
family includes apoptosis promoting proteins, including Bad, Bax, 
and Bid, among others. By alternatively regulating the permeability 
of the mitochondrial membrane, the proapoptotic Bcl-2 proteins can 
cause cytochrome c release from the mitochondria and subsequent 
initiation of apoptosis. The BH3 domain is the ‘death domain’, found 
in all proapoptotic Bcl-2 proteins and capable of introducing a pore 
into the mitochondrial membrane to allow cytochrome c release. 

SS has deregulated expression of a number of proteins of 
the Bcl-2 family, including both antiapoptotic and proapoptotic 
proteins [6]. Part of the SS expression signature includes high level 
of Bcl-2 expression, leading to apoptotic resistance [67-69]. Bcl-
xl, another antiapoptotic protein, has also been shown to be up 
regulated by the SYT-SSX fusion protein. Mcl-1 and Bcl2a1a, both 
antiapoptotic proteins, are down regulated by SYT-SSX expression 
[6]. Up regulation of anti-apoptotic proteins likely contributes to the 
resistance of SS to many cytotoxic chemotherapy.

Targeted therapeutics directed towards the apoptotic pathway 
have been developed capitalizing on the BH3 death domain of the 
Bcl-2 proapoptotic proteins. BH3 domain peptidomimetics have 
been shown to be capable of targeting SS cell lines and xenografts and 
inducing apoptosis. ABT-263 is a potent Bcl-2 inhibitor and capable 
of sensitizing SS to classical cytotoxic chemotherapies [6] (Figure 
4). The lack of Mcl-1 expression, the natural therapeutic bypass to 
the Bcl-2 inhibitors, makes Bcl-2 a highly attractive target for the 
treatment of SS.

MDM2: MDM2, or mouse double minute 2 homolog, is a key 
protein in the p53 signaling pathway. MDM2 functions as an E3 
ubiquitin ligase [70]. Under normal cellular conditions, MDM2 binds 
to and poly-ubiquitinates p53, marking the transcription factor for 

proteasomal degradation.  When the cell experiences a p53 activating 
signal, including DNA damage, oxidative stress, or ribonucleotide 
depletion, MDM2 function can be inhibited by a number of 
mechanisms to up regulate p53 function and subsequently up regulate 
p53 target genes [71]. MDM2 can be inhibited by phosphorylation 
or localization to the nucleolus by p14arf, the protein product of the 
alternative reading frame of the p16 INK4a locus. Activation of p53 
can cause transcription of genes causing cell cycle arrest or apoptosis 
depending on the strength and duration of the activating signal [72]. 

While SS are typically wild type for p53, an up regulation of MDM2 
has been documented [73]. The SYT-SSX fusion protein is capable 
of increasing p53 poly-ubiquitination and subsequent proteasomal 
degradation by increasing the stability of MDM2. MDM2 auto-
ubiquitination is inhibited in SS, leading to increased MDM2 stability 
[74]. The increase of MDM2, and subsequent decrease of p53, leads 
to an increase in the ability of SS cells to survive typical apoptotic 
signals by attenuating the response of the p53 activating signal. The 
decreased level of p53 leads to the increased resistance of apoptosis in 
response to genotoxic stress in SS. 

Since SS is typically wild type for p53, therapeutics targeting the 
activity of MDM2 can be particularly useful in treatment of SS due to 
their ability to reactivate the p53 signaling axis [75]. Small molecule 
inhibitors of MDM2 in combination with cytotoxic chemotherapy 
may provide enhanced toxicity to SS [72,76]. Two such small 
molecule inhibitors of this interaction include nutlin-3a and MI-219, 
both of which have been shown to decrease MDM2-p53 interaction, 
increasing the transcriptional activation potential of p53 [70] (Figure 
4). 

ASS1: ASS1, or argininosuccinate synthetase 1, is a key enzyme 
in the urea cycle, catalyzing the formation of argininosuccinate from 
citrulline and aspartate. Cells that are deficient in ASS1 expression 
rely upon arginine from the environment. When deprived of 
arginine, these cells are incapable of producing the amino acid and 
undergo autophagy [77,78]. It has been shown that in nearly 90% of 
sarcomas, the ASS1 promoter is heavily methylated and expression 
is subsequently silenced [79]. ASS1 methylation has been shown to 
correlate with reduced metastasis free survival. These tumors have 
been shown to be arginine auxotrophs, with inhibited growth and 
induction of autophagy upon arginine deprivation [80,81]. 

SS have been shown to be one of the classes of sarcoma in which 
ASS1 is silenced [9]. The reliance upon extracellular arginine can be 
exploited with use of ADI-PEG20. This pegylated form of arginine 
deiminase is capable of converting extracellular arginine into citrulline 
and ammonia and has been shown to decrease arginine levels in the 
blood stream and cause ASS1 deficient tumors to undergo autophagy. 
ADI-PEG20 has also been shown to increase the radio sensitivity of 
ASS1 deficient tumors, and thus may increase the susceptibility of SS 
to traditional radio therapy [82] (Figure 4). 

HDAC: Histone deacetylases, or HDACs, are important 
chromatin remodeling enzymes involved in the epigenetic regulation 
of the genome. Histone tail acetylation decreases the electrostatic 
interaction between the histone tail and the DNA backbone, allowing 
the two to dissociate, enabling transcription. Thus, acetylation 
of histones correlates with increased gene expression, while 
deacetylation correlates to tighter associations between DNA and 
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histones, condensation of the chromatin, and subsequently decreased 
gene expression. Epigenetic down regulation of tumor suppressors 
have been shown to contribute to SS cell growth and proliferation.

As SYT-SSX is a chromatin remodeling fusion protein, targeting 
this epigenetic deregulation has been shown to inhibit SS cell growth 
in vitro and in vivo [83]. The HDAC inhibitors have also been shown 
to induce apoptosis in SS cell lines. HDAC inhibitors are capable 
of driving the re-expression of genes typically silenced in tumors, 
including the p21/WAF1 cyclin dependent kinase inhibitor [84-86]. 
The HDAC inhibitors that are currently in clinical trials for cancer 
treatment, including FK228, MS-275, SAHA, and PXD101 could 
prove to be very effective in the targeted treatment of SS [87-89] 
(Figure 4). 

Summary
The standard of care for the treatment of sarcoma is clinical 

trial when surgical resection is not possible.  The unique biology of 
SS driven by its hybrid transcription factor SYT-SSX makes it ideal 
for histology driven clinical trials.  Optimal candidates for therapy 
include the HDACs, SRC, MDM2, ASS1, and Bcl-2 (Figure 4, 
Table 4). The most likely successful strategy will involve targeting 
more than one of these unique SS inhibited targets simultaneously.  
Combinations such as MDM2 inhibition with an HDAC inhibitor or 
a Bcl-2 inhibitor with ADI-PEG20 and the various combinations that 
are possible wait direct testing in SS cell lines and patients.  Rationally 
designed therapies based on the specific biology of SS should lead to a 
bright future for the treatment of SS.   
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