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Abstract

Agricultural crops and its by-product utilization is an emerging area in 
Food Industry. The waste generated from processing industries is generally 
disposed off, ultimately hampering the environment. However, this waste is a 
rich source of many valuable components, pectin being one of them. Pectin, a 
heteropolysaccharide has numerous nutritional and functional properties making 
its extraction a matter of utmost importance. Although it is present in cell wall 
of most of the plants but its amount, structure and chemical composition differs 
between plants and makes its recovery tedious. In order to commercialize, 
yield and quality of pectin are important parameters to be considered during 
extraction. Therefore, selection of a convenient technique is essential. However, 
conventional extraction method is being widely used; it has some limitations 
such as laborious handling and certain environmental concerns. Therefore, 
there is a need to exploit novel pectin extraction techniques. In addition to 
that, there are many other parameters (increase in cost and skilled labor) to 
be considered in order to have clear insight of the possibilities to scale up the 
process. The present review discusses the chemical structure and classification 
of pectin, its properties and source of recovery with primary focus on innovative 
pectin extraction techniques.

Keywords: Agricultural crops; Pectin; Heteropolysaccharide; Laborious 
handling; Ohmic heating

methanol. The reason of pectin being acidic in nature is the presence of 
free carboxyl groups. Pectin is both polydisperse and polymolecular. 
Hence, it is heterogeneous in its chemical structure and molecular 
weight [8]. Isolation of pectin is very tough as it changes according to 
storage, processing and source of the plant material [7].

Galacturonic acid sub-units in pectin are attached by α-1,4-
glycosidic bonds. The carboxylic groups in galacturonic acid are fully 
or partly neutralized by sodium, ammonia or potassium ions and partly 
esterified by methyl groups. Pectin is composed of very complex set of 
polysaccharides covalently linked to each other. Homogalacturonan 
(HG) and rhamnogalacturonan I (RG-I) are the most abundant 
classes. Whereas, other classes include rhamnogalacturonan II (RG-
II), xylogalacturonan (XGA), and apiogalacturonan (AGA) [9]. 
As mentioned above, homogalacturonan are the most abundant 
form that are partially carboxylated at C-6 and acetylated at O-2 
or O-3. The ability to interact and industrial applications are partly 
determined by methyl esterification of homogalacturonan regions. 
Methyl esterification is equivalent to the degree of methylation 
(DM) as a percentage, which is an important attribute to indicate 
the ability of the pectin to form gel. Rhamnogalacturonan-I (RG-
I) is a type of pectin with a backbone of the continuous units of 
disaccharide i.e. (1-4)-α-D-galacturonic acid-(1, 2)-α-L-rhamnose. 
Rhamnogalacturonan II (RG-II) type of pectin has a complex 
structure comprising of highly branched structure of polysaccharide. 
RG-II exists as a dimer in the primary walls of plants. While 
xyloglacturoanan and apiogalacturonan are much less complex 
regions. The homogalacturonan structure in pectin is substituted with 
xylose for xylogalacturonan and monosaccharide or disaccharide 

Introduction
Pectin is a natural biopolymer categorized as hetero-

polysaccharide and is present mostly in the primary cell wall of plants 
[1]. In some of the plants, it is reported to be present in the middle 
lamella part of the plant cell wall. Pectin is a combination of various 
complex polysaccharides and provides mechanical strength to the 
plant tissue [2]. The main building block of pectin is galacturonic 
acid and unit is associated with other compounds present in plant 
cell wall like lignin, cellulose or polyphenols [3]. The pectin content 
is substantially more in the cell walls of some fruits and vegetables. 
Pectin helps in ion homeostasis as well as regulates the properties 
such as ion balance, pH, porosity, and surface change [4]. Also, 
pectin oligosaccharides help to activate plant defense responses [5]. 
Pectinase and pectinesterase are the enzymes responsible to hydrolyze 
the structure of the pectin during ripening process. Pectinase work by 
cleaving the main pectin chain and its side branches to disrupt the 
whole structure of the pectin and converting it to a simple soluble 
polymer [6]. The content, chemical constituents and structure of the 
pectin depends upon the source, and condition of the plant or plant 
part. 

Chemical Structure of Pectin
Pectin is a multifunctional component of the plant cell wall 

consisting of linear polysaccharide (composed of α-galacturonic acid 
monomer) having molecular weight approx. 60,000-130,000 g/mol 
[7]. The carboxyl groups of uronic acid residues exist either in free 
form or as a salt form with calcium, sodium or other small counter 
ions and in some cases as naturally esterified groups, mainly with 

Special Article - Bioprocessing

Conventional and Emerging Novel Techniques for the 
Extraction of Pectin and Applications of Pectin
Sharma N, Pooja and Yadav SK*
Center of Innovative and Applied Bioprocessing (CIAB), 
Sector- 81 (Knowledge city), Mohali, India

*Corresponding author: Sudesh Kumar Yadav, Center 
of Innovative and Applied Bioprocessing (CIAB), Sector- 
81 (Knowledge city), Mohali, 140306, India

Received: February 22, 2022; Accepted: April 01, 
2022; Published: April 08, 2022



Austin J Biotechnol Bioeng 9(1): id1115 (2022)  - Page - 02

Yadav SK Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

apiofuranosyl for apiogalacturonan. RG-II plays a crucial role in the 
structure of plant cell walls as small structure alterations of RG-II lead 
to the reduction in the dimers formation and can cause severe growth 
defects [10-12]. 

Structural Classifications of Pectin
Pectin can be classified according to their degree of esterification, 

acetylation and amidation as follows:

Degree of esterification (DE) in pectin
The Degree of esterification (DE) is defined as the percentage of 

esterified carboxyl groups present in the structure of pectin. Different 
properties like gelling, emulsifying and texturizing are dependent 
upon DE. It is an important parameter to determine further 
applications of pectin. With the increase in DE, the water solubility 
decreases due to the hydrophobic nature of esters. Therefore, increase 
in DE improves the gelation rate and results in the rapid gelation of 
pectin [8].

Pectin can be divided into two types depending upon their 
degree of esterification (DE) i.e., low methoxyl pectin (DE<50) or 
high methoxyl pectin (DE>50) [13]. These two types of pectin form 
the gels by different mechanisms. High methoxyl pectin (HMP) 
has DE higher than 50%. Such pectins are used mostly in the food 
industry because of their gelling and thickening properties. HMP is 
very sensitive to acidity and for gelation it requires large amount of 
sugar. Due to the presence of hydrogen bonding and hydrophobic 
interactions between pectin chains, they form gel at low pH within a 
narrow range of around 3.0 and high concentration of soluble solids. 
Gelation occurs when HG portions are cross-linked to form three 
dimensional crystalline networks in which water and other solutes 
are trapped. These gels are thermally reversible and are soluble in hot 
water. It is reported that formation of HMP gel occurs by different 
mechanisms, such as self-aggregation, esterification and entanglement 
under alkaline pH. Due to electronic attraction, dissociated carboxyl 
groups in HMP are bound to Na+ or K+, and thereby, enable HMP 
molecules to move close to each other and improve the gel network 
formation [8,14]. Low methoxyl pectin (LMP) has DE less than 50%. 
Generally, it is formed by the de-esterification of HMP and is not 
sensitive to pH. For gel formation, they require no sugar content and 
limited quantities of divalent cations such as Ca2+ [15]. Mechanism of 
gelation in LMP occurs by the formation of calcium bonds between 
two carboxyl groups. It has been observed that high concentration 
of calcium and pH values close to the isoelectric point (pH=3.50) 
improves the gel strength by building calcium bridges at dissociated 
carboxyl groups. LMP is commonly used in food industry to form 
low-sugar jams as it requires no sugar content for gelation [8]. 

Degree of acetylation in pectin
The degree of acetylation (DAC) can be defined as the total 

percentage of acetyl groups attached to the hydroxyl groups of 
galacturonosyl residues by ester bonds. It has been shown widely that 
acetylation of pectin is a stabilizing and emulsifying effects which 
concomitantly decreases the gel forming ability of the pectin [16-
18]. Studies have shown that pectins with a degree of acetylation up 
to 25% possess the reduced gelling properties [19]. Specifically, the 
multiple acetyl groups in sugar beet pectin provide it a surfactant 
group (COOCH3) with ammonia [20,21].

Degree of amidation in pectin
The percentage of amide groups present in the pectin is termed as 

the degree of amidation. The amidated pectin are thermo-reversible 
and resistant to variations of calcium preventing it from precipitation. 
Amidation prevents the syneresis and increases the solubility of 
pectin in water [21]. 

Various Sources of Pectin
In higher plants, one third of the dry weight of the cell wall is 

composed of pectin. The gelation property of pectin depends upon the 
molecular size and degree of esterification (DE). Pectin extracted from 
distinct sources have unique gelling properties owing to difference in 
these above- mentioned parameters. So, a fruit cannot be qualified as a 
source of commercial pectin solely on the basis of high pectin content 
[22]. At present, main source of commercial pectin is apple pomace 
and citrus peels. Both are by-products of cider (or juice) production. 
Apple pomace encompasses 10-15% of pectin, whereas citrus peels 
contain 20-30% pectin on a dry matter basis [23]. Citrus and apple 
pectin are basically equivalent from an application point of view. 
Citrus pectin appears light tan in color whereas apple pectin is often 
dark in color. Alternate sources such as eggplant peel, chamomile 
waste, cocoa pod husk, mango peel, banana peel or tomato husk have 
been considered to acquire pectin-based polymers of better quality. 
Also, tropical fruits have been recommended as compelling pectin 
sources. Due to the innumerable applications of pectin in various 
industries, the extraction of pectin from several biomasses and their 
waste has been widely studied. Table 1 summarizes various reported 
studies based on the extraction of pectin from different sources.

Properties of Pectin
Pectin is water soluble in nature. Monovalent cationic salts of 

pectic and pectinic acids are generally water soluble, whereas di- 
and trivalent cation of salts are water insoluble or sparsely soluble in 
water. Dry pectin in powder form has the tendency to form clumps 
when added to water. The clumps so formed comprise of partially 
dry packets of pectin enclosed in a covering of moist outer envelope. 
It has been found that by improving dispersibility of pectin using 
special treatment during manufacturing or by mixing dry pectin with 
water soluble carrier material can prevent clump formation [14]. 
Dilute pectin solutions are usually Newtonian in nature but they 
also exhibit in non-Newtonian, pseudo plastic behavior at moderate 
concentrations. Gelation, viscosity and solubility are inter-connected. 
For example, components which increase the firmness of gels can 
lead to reduction in solubility increase in viscosity and thereby the 
overall proclivity to form gel easily.

The most important application of pectin is gel formation. HM- 
pectin forms the gel in the presence of sugar at low pH. The structure 
of HM-pectin has some limitations due to the insufficient acid groups 
in HM-pectin to form gel or precipitate with calcium ions. However, 
other ions such as copper or aluminium can help in precipitation at 
certain conditions [14]. It has been reported that in order to form gel, 
hydrogen bonding and hydrophobic interactions are very significant 
forces [24]. Gel is formed by the interaction of free carboxyl groups 
with the hydroxyl groups of neighboring molecules through 
hydrogen bonding. Majority of the unesterified carboxyl groups are 
existing as partially ionized salts in neutral environment. At acidic 
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pH, the carboxyl groups are transformed into unionized carboxylic 
acid moieties. Therefore, the lowering of number of negative charges 
leads to a decrease in repulsive forces between pectin molecules 
and reduces the bonding between the pectin and water molecules. 
Addition of sugar leads to competition between pectin and sugar to 
bind with water. Sugar being more soluble competes out pectin and 
further decreasing its solubility in water.

All the above-mentioned factors reduce the potential of pectin 
molecules to stay in a dispersed state and therefore aggregate together. 
As the pectin solution is cooled, the instability of less hydrated pectin 
molecules helps in the formation of a gel, a conspicuous matrix 
holding the aqueous solution. Moreover, Degree of esterification 
directly affects the rate of gel formation.  A higher DE leads to faster 
and rapid gel formation. Pectin with DE of above 72% set rapidly 
whereas pectin with DE of 58-65% set comparatively slowly. It has 
been reported that for LM-pectin, the divalent cations are vital for 
appropriate gel formation. The process of LM-pectin gel formation 
works principally on the mechanism of widely accepted ‘egg-box’ 
model [25]. This model involves the formation of junction zones by the 
side-by-side aligned clusters of galacturonans, where the electrostatic 
and ionic bonding of carboxyl groups forms the intermolecular 
links between adjacent or parallel chains of GalA monomer. Now 
it is widely accepted that these junctions are composed of dimers in 
helical symmetry, similar to the model proposed for alginates [26]. 
The free-electron pairs of the oxygen atoms of the hydroxyl groups, 
the pyranose ring, and the glycosidic bonds of the component sugar 
units aid the bonding process [27]. The strength of the electrostatic 
bonds has a direct impact on the longevity of the junctions. The 
presence of a minimum of seven continuous carboxyl groups on the 

internal face of each participating chain is essential for the stability 
of the electrostatic bonds [28]. Interestingly, it has been reported 
that all LM-pectin gels develop similar type of junction zones [29]. 
Moreover, it has been also observed that the gelling ability of the LM-
pectin improves on amidation. Amidated pectin requires less calcium 
levels for gel formation and is resistant to precipitate formation at 
higher calcium quantities [23]. The Degree of Esterification strongly 
affects the strengths of such ionic bonded gels. The gel formation 
ability of pectin is also affected by monovalent cations like sodium 
as they can react with free carboxyl group and reduce the cross-
linkage with calcium and ameliorate the solubility of LM-pectin in 
the presence of calcium [30]. It has been accepted that sugar is not 
necessary for the formation of gel with LM-pectins but around 10-
20% of sugar protects the gel from syneresis and provides the desired 
strength to these gels [31]. Moreover, the amount of calcium required 
to form gels can be reduced with addition of low quantities of sugar. 
According to the reports the higher concentrations of sugar (60% or 
more) are not favorable because it interferes with gel formation as the 
sugar undergoes dehydration which assists hydrogen bonding and 
removes cross-linking by divalent cations.

Pectin Extraction Methods: Conventional 
Extraction and Emerging New Innovative 
Extraction Technologies like Microwave-
assisted Extraction, Enzyme-assisted 
Extraction, Ultrasound-assisted Extraction, 
Dielectric Barrier Discharge Extraction, 
Subcritical Water Extraction, Ohmic 
Heating Extraction, Moderate electric 
field Extraction, High Pressure Processing 
Extraction

Pectin is gaining more attention now-a-days because of its diverse 
applications in food sector. Therefore, extraction of pectin using 
different techniques has become more challenging and is compiled 
as shown in Figure 4.

Conventional extraction method for pectin
Pectin is insoluble is nature when present in the cell wall of 

plants and known as “protopectin”. Protopectin can be extracted 
by hydrolysis with a hot diluted mineral acid. This helps in breaking 
the bonds between the cell wall and the sugars present on the side 
chains and then releasing the pectin into the aqueous medium [32]. 
The pectin is precipitated and purified in various ways and finally 
dried. Due to the high yield and good quality of pectin, citrus peels are 
considered to be the main source to obtain pectin at industrial level 
[33]. The most common method to extract pectin from orange peels 
is hydrothermal extraction which involves extraction under acidic 
conditions, extraction time (60-300 min), and high temperatures (75-
95ºC). The acidic medium reduces the presence of other bioactive 
compounds like polyphenol which increases the yield of pectin and 
helps in improving the quality of extracted pectin. In order to obtain 
higher yield, conventional extraction using boiling water requires 
several hours [34,35]. During the extensive heating process, pectin 
degrades by debranching which leads to the poor quality of pectin. 
Therefore, appropriate conditions to extract pectin is acidic medium 
(pH 1.5-3), heating between 75 and 100 ºC with continuous stirring 
for 1-3 h. Generally, pectin is extracted in industry using strong acid 

Source (common name/Scientific name) % Pectin content (wet weight)

Apple (Malus spp.) 0.5-1.6

Apple pomace 1.5-2.5

Banana (Mus acuminate L.) 0.7-1.2

Beet pulp (Beta vulgaris) 1

Carambola (Averroha carambola) 0.66

Carrot (Daucus carota) 0.2-0.5

Gauva (Psidium guajava L.) 0.77-0.99

Lemon pulp (Citrus limon) 2.5-4.0

Lychee (Litchi chinesis L.) 0.42

Mango (Mangifera indica L.) 0.26-0.42

Orange peel (Citrus sinesis) 3.5-5.5

Papaya (Carica papaya) 0.66-1.0

Passion fruit (Passiflora edulis S.) 0.5

Passion fruit rind 2.1-3.0

Peaches (Prunus persica) 0.1-0.9

Pineapple (Ananas comosus L.) 0.04-0.13

Strawberries (Fragaria ananassa) 0.6-0.7

Tamarind (Tamarindus indica L.) 1.71

Thimbleberry (Rubus rosalfolius) 0.72

Tomato fruit (Lycopersicon esculentum) 0.2-0.6

Table 1: Different raw materials and percentage pectin content [77].
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solutions under the heating environment such as hydrochloric acid, 
sulphuric acid, nitric acid and phosphoric acid. The use of such strong 
acids possesses a risk to environment and increases the cost of the 
process. Use of mineral acids has some other drawbacks as well, such 
as loss of some volatile compounds, and degradation of pectin. As the 
new concept of “green technology” and “green chemistry” is emerging 
rapidly. The attention is now moving towards the use of organic acids 
(citric acid and acetic acid) [36]. Research has shown that during 
extraction of pectin, use of mineral acids lead to more hydrolysis and 
more depolymerization as compared to the use of organic acids. The 
HCl has documented to be more pectin degrading agent compared 
to citric acid. Pectin extracted using mineral acid is expected to have 
lower molecular weight as compared to that of pectin extracted from 
organic acid. 

There are many factors, such as pH, solid to liquid ratio, solvent 
properties, temperature, time, diffusion rate and particle size which 
are important for conventional extraction. Some pretreatments like 
washing with water, blanching in order to inactivate the enzymes, 

drying to remove excess water and grinding to increase the surface 
area are also done in order to get high yield of pectin [37]. After all 
these pretreatments, pectin is subjected to acidic aqueous solution 
and released pectin was precipitated with the help of alcohol. The 
precipitated pectin is then separated, washed and dried under 
vacuum oven, and finally crushed into fine powder. From the 
commercial point of view, there are other steps that can be performed 
in between in order to get desired quality of pectin. For example, 
between the filtration and washing step, removal of color of pectin 
can be done by using activated carbon/charcoal, degradation of 
residual starch can be carried out by using the amylase. Moreover, 
LM- pectin can be obtained with the help of chemical, acid, and/or 
alkaline de-esterification. Acidic aqueous solution at low pH helps 
in releasing protopectin easily and also removes Ca2+ and Mg2+, thus 
allowing isolation of HG enriched pectin with higher yield. Structure 
of alkaline pectin have many RG-I oligomers with arabinan and 
galactan side chains and usually have low DM and low yields [38]. As 
the heating time increases, degree of esterification in pectin decreases. 

Homogalacturonan Xylogalacturonan ApiogalacturonanRhamnogalacturonanI RhamnogalacturonanII

Galacturonic acid

Methyl ester

Acetyl

Xylose
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Figure 1: Pectin structure.
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Pectin extracted through different extraction techniques has 
different DEs. Considering the extraction time, prolonged extraction 
procedure can lead to pectin degradation. It should be in the range 
where solvent dissolves appropriate amount of the target molecule. 
Therefore, in order to get high yield and better quality product, 
desired conditions should be optimized properly. The solid/liquid 
ratio is also an important attribute for the extraction of pectin and 
should be maintained between 1:10 and 1:50. Solid/liquid ratio lower 
than 1:10 leads to lower yield of pectin. This is because the quantity of 
solvent is not enough to dissolve the biomass properly and extract the 
pectin from it. It has been reported that increase in solid/liquid ratio 
leads to the rise in dissolution capacity which generate high yield of 
pectin [17]. Various studies on pectin extraction by conventional acid 
extraction method are compiled in Table 2.

Emerging new innovative extraction technologies for 
pectin

Several other techniques have been examined to decrease 
the time of extraction of pectin from citrus by-products. Further 
investigations are required to obtain new extraction procedures for 
the improvement of pectin quality and reduction of extraction time. 
The model extraction method which is extensively used has several 
drawbacks like longer extraction time, lower yield and chances of 
degradation of pectin. To address the aforementioned issues, different 
approaches have been explored which could increase the yield, lessen 
the solvent consumption and protect the functional properties of 
pectin [37]. Microwave-assisted extraction (MAE), Enzyme-assisted 
extraction (EAE), Ultrasound-assisted extraction (UAE), Subcritical 
fluids, and high hydrostatic pressure are some of the current 
alternatives. These methods are sustainable and much efficient than 
the classic method of pectin extraction [39]. The pursuit for inventive 
and greener extraction methods has led the investigations into 
amalgamation of different techniques with the goal of consolidating 
their advantages. Furthermore, the development of new methods 

has provided investment opportunities for industries and with these 
superior techniques they can obtain specific extractions of high value 
added purified compounds. Though the expenses of microwave 
or ultrasound based equipment seem to be higher but the energy 
consumption, time of extraction, cost of reagents are nullified and 
responsible for higher yield. Hence, these methods will prove to be 
profitable in the long run. Some of the above-mentioned techniques 
are discussed below:

Microwave-assisted extraction (MAE) for pectin: It is an 
environment-friendly technique and uses the polar solvent to 
absorb microwave energy enclosed in electromagnetic field [40]. The 
microwave radiation heats up the polar solvent very fast to make 
the extraction process less time consuming. This makes the process 
more efficient as compared to the traditional heating methods. It has 
been reported that pectin depolymerization which occurs during acid 
extraction process can be reduced by MAE technique. Additionally, 

Sources Treatments
Extraction conditions

Yield (%) References
S/L ratio Solvent pH Time (min) Temp (ºC)

Grapefruit peel CE 1:50 HCl 1.5 90min 80°C 23.5 [78]

Grapefruit peel CE 1:50 HCl 1.5 1.5h 80°C - [79]

Passion fruit CE 1:30 HCI 2 60min 98.7°C 14.8 [17]

Citron peels CE 1:30 Citric acid 1.5 95 95°C 28.31 [80]

Pomelo peels CE 1:30 HNO3 2 90 90°C 23.19 [81]

Beet pulp CE 1:50 HCl 1 3h 80°C 20 [82]

Lime peel CE 1:40 HCl - 1h 95°C 15.91 [83]

Papaya peel CE 1:50 HCl 2 60min 80°C 16 [84]

Potato pulp CE 1:15 Citric acid 2.04 60min 90°C 14.34 [85]

Sugar beet pulp CE 1:20 - 1.5 1h 80°C 7.1 [86]

Carrot pomace CE - - 1.3 79.8min 90°C 15.2 [87]

Apple pomace CE 1:25 HNO3 1.5 70 90°C 25.3 [88]

Pomegran-ate peel CE 1:20 HNO3 1.7 80min 86°C 8.5 [85]

Water-melon peel CE 1:20 H2SO4 1 150min 90°C 17.6 [89]

Apple pomace CE 1:40 HNO3 - 10min BT 15.04 [90]

Table 2: Pectin extraction from different sources by conventional method.

CE: Conventional Extraction.
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energy from microwave irradiation can enhance cell lysis through an 
escalated internal pressure inside the cells of the plant sample and 
an abrupt increase in temperature, which disintegrates the sample 
surface and as a result pectin exudes from the plant cells into the 
solvent [41]. 

Enzyme-assisted extraction (EAE) for pectin: Currently, 
enzymes are also being utilized to ameliorate the extraction 
process by dissolving the matrix of the plant cell wall. Application 
of enzymes helps in increasing the cell permeability by destroying 
the cell wall. Several factors like concentration of enzyme, reaction 
temperature, time and type of enzyme and particle size of sample 
play a key role in enzyme-assisted extraction [42]. Pectinases are the 
enzymes which are employed for the extraction of pectin from the 
plant cell wall. Pectinases are isolated majorly form fungi. Enzymes 
used extensively in EAE are namely, cellulase, protease, alcalase, 
hemicellulase, pectin lyase, xylanase, α-amylase, β-glucosidase, 
endo- and exopolygalacturonase and pectinesterase. These enzymes 
serve as the agents for breaking the glycosidic bonds between the 
monomers of pectin. Breaking of the glycosidic bond reduces the 
viscosity of the solution which further eases the centrifugation and 
filtration. According to Rhein-Knudsen et al. [43], the most credible 
benefit of using this green technique for the extraction of pectin is 
the preservation of structural traits and functional properties of the 
target polysaccharides. Enzyme extraction is considered to be least 
polluting extraction method compared to other methods. However, 
the isolation and procurement of the enzymes is somewhat exorbitant 
as well as controlling enzymatic reactions at commercial level is also 

a tedious task. Different enzymes have a unique response to changing 
environmental conditions like temperature and nutrient availability 
which can ultimately effect the yield of pectin [44].

Ultrasound-assisted extraction (UAE) for pectin: Soundwaves 
with frequencies above 20kHz are called Ultrasounds. Ultrasonic 
waves, in the range of 20 to 100 kHz, are widely used in UAE 
[45,46]. Ultrasounds (Us) have been profoundly utilized in the 
food industry because of their chemical and/or physical properties. 
Unlike electromagnetic waves, sound waves require a medium for 
propagation. In UAE method, when sound waves pass through a 
liquid medium, they create cycles of compression and expansion [47]. 
For a liquid medium, the expansion cycle creates bubbles/cavities 
which grows and subsequently experience collapse as the negative 
pressure exerted exceeds the local tensile strength of the liquid. This 
process of formation, growth and collapse of bubbles is known as 
“cavitations”, and is the basis for ultrasound-assisted extraction 
(UAE) [48]. There are several advantages of UAE such as decreased 
extraction time, equipment size, and energy consumption, lower use 
of solvent and improved extraction yield, and it is also acknowledged 
more eco-friendly than the conventional acid extraction method [49]. 

Dielectric barrier discharge extraction for pectin: Another 
method is Dielectric Barrier Discharge Extraction which involves 
the innovative use of plasma, the fourth state of matter. Plasma 
contains gases which are partially ionized consisting of reactive 
species like anions, cations, photons, free radicals and gas atoms. 
Dielectric Barrier Discharge is one among several other methods 

Sources Treatments
Extraction conditions

Yield (%) References
S/L ratio Solvent pH Time (min) Temp (ºC)

Lime peel EAE 1:30 Citrate buffer 3.5 4h 50°C 22.5 [91]

Beetroot EAE 0.11111 Citrate buffer - 20h 30°C - [92]

Chicory root EAE - Sodium acetate buffer 5.5 4h 50°C - [91]

Butternut squash EAE 0.11111 Citrate buffer - 20h - - [92]

Green tea leaf EAE - HCl 4.5 3h 3°C 8.5 [93]

Eggplant peel UAE 1:20 Citric acid 1.5 30min - 33.64 [94]

Prickly pear UAE 1:30 - 1.5 70min 70°C 18.14 [95]

Pomegranate peels UAE 1:15 Citrate buffer 5 20min - 24.8 [96]

Grapefruit UAE 1:50 HCl 1.5 25min 70°C 17.92 [97]

Grapefruit peel UAE 1:50 HCl 1.5 27.9min 66.7°C 27.46 [78]

Apple peel waste UAE 1:23 HCl 2.36 18min 63°C 8.93 [98]

Dragon fruit MAE 1:56 Citric acid 2.9 12min 75°C 17.01 [99]

Sweet lemon peel MAE - Citric acid 1.5 3min - 25.31 [100]

Grapefruit MAE 1:50 HCl - 6min - 27.81 [97]

Banana peels MAE 1:50 HCl 3 100s - 2.18 [101]

Watermelon rinds MAE 0.11111 Acetic acid 2 12min - 5.76 [102]

Lime peel MAE 1:40 HCl - - - 23.32 [83]

Pistachio green hull MAE 1:15 - 1.5 165s - 18.13 [103]

Pomelo peel MAE 1:30 HCl - 2min - 20.5 [16]

Orange waste Ohmic heating 1:20 - 1.5 15s 90°C 10.69 [104]

Table 3: Different innovative extraction treatments and conditions to extract pectin.

EAE: Enzyme-Assisted Extraction; UAE: Ultrasound-Assisted Extraction; MAE: Microwave-Assisted Extraction.
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to generate cold plasma [50]. This method can employ the plasma’s 
active constituents as the means to destroy particular bonds leading 
to overall modification and degradation of macro biomolecules like 
proteins and polysaccharides. It has been observed that the chemically 
active species from DBD plasma produce hydroxyl free radicals which 
attack the pectin chains and generate molecules of smaller sizes [51]. 
Though DBD plasma has tremendous potential, pectin extraction by 
this technique has not captivated the imaginations of researchers. 
Therefore, there are very sparse studies and data on this subject. In 
near future DBD plasma can be used to alter the pectin structures.

Subcritical water extraction for pectin: Subcritical water 
extraction involves the use of water at higher pressure reaching a 
temperature more than its normal boiling temperature without 
undergoing any phase alteration. When such a solvent is utilized in 
extraction, the process is called subcritical water extraction (SWE) 
which is also known as pressurized hot water extraction (PHWE) 
and superheated water extraction (SHWE) [52]. Hence this principle 
has been applied within the food and environmental fields reported 
with many other different names. The rise in temperature of water 
for extraction has many advantages like low viscosity, low surface 
tension, more mass transfer rate, and high diffusion. It may also 
help to extract both non-ionic and ionic compounds as the dielectric 
constant of water reduces from 79 at 25ºC to 33 at 200ºC [53]. Recent 
studies have shown work on SWE processes for pectin from many 
different plants. Ueno et al. [54] have shown the comparison between 
SWE and conventional acid extraction method to isolate pectin from 
the flavedo part of Citrus junos. Authors observed that the subcritical 
water at temperature 160ºC increases the extraction rate quickly. 

This can be explained that the solvent at high temperature with low 
dielectric point helps in enhancing the solubility of pectin in water. 
A reported study showed lower yield of pectin at temperature more 
than 80ºC due to the degradation of pectin. Chen et al. showed in 
their study that subcritical water aid in increasing mass transfer and 
optimum temperature can be helpful to elude the acid hydrolysis step 
in conventional acid extraction. This eco-friendly method offers many 
benefits such as rapid extraction process, exclude solvent, and higher 
quality extracts [52,54]. Generally, subcritical water as a solvent is 
considered to be as safe (GRAS) and makes this method appropriate 
for food and pharmaceutical compounds like pectin.  

Ohmic heating extraction for pectin: Ohmic heating is a cutting 
edge technology in which electric current is passed through the 
desired food material producing the heat according to Joule’s law [55]. 
This technique is one of the advanced thermal process which is quick 
and constant in nature. This method has been employed to sterilize 
foods and to recover different valuable compounds from plants. 
Ohmic heating rapidly heats the heterogeneous system through 
volumetric heating causing the proper mass and heat transfer during 
the extraction. Thus, minimizes the variations in pectin properties 
and decreases the processing time. So, this feasible technique can be 
used to improve the quality of pectin [56]. 

Moderate electric field extraction for pectin: It is yet another 
non-thermal method which uses an electric field (low frequencies) at 
relatively low temperatures that helps in electroporation and improves 
diffusion. Application of voltage distresses the cells membrane and 
improves their permeability. Pulse electric field is similar to MEF and 
works by producing electroporation on cytoplasmic membranes and 
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Figure 4: Conventional and Innovative technologies to extract pectin.
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enhances its intracellular constituents by evading unwanted changes 
in plant material [56]. 

High pressure processing extraction for pectin: One of the 
commonly used non-thermal processing techniques in food industry 
is high pressure processing (HPP). This method includes sealing of 
the sample in special packages and keeping them in a vessel under 
isostatic pressure above 300 MPa. High pressure damages the plant 
cells which leads to the proper diffusion of solvents and increases mass 
transfer and liberates the extracts [57]. This extraction technique can 
be applied in synergetic extraction to increase the yield of pectin and 
other bioactive compounds by decreasing the extraction time. 

Regardless of extensive work in laboratories on these emerging 
extraction techniques, still there are various promising challenges 
for the industrial application. Like the requirement of professional 
operators, high capital expenditure, and less suppliers of these 
machinery. Currently various efficient and effective novel technologies 
are being investigated to extract pectin from different agricultural by-
products and food wastes such as microwave, ultrasound, subcritical 
water, enzymes and thermal or non-thermal methods, with different 
levels of successes shown in table 3.  Apparently, all above mentioned 
techniques have provided very promising results both qualitatively 
and quantitatively at laboratory scale, so far, sometimes unsatisfactory 
and inadequate knowledge of their applicability upon scale-up can 
hamper their commercialization. Therefore, proper professional 
training and knowledge of up-scaling should be kept in mind by the 
scientists in this area of research.

Applications of Pectin in Various Sectors
Applications of pectin in food industry

Generally, in the food industry pectin is used as a thickening, 
gelling, emulsifying and stabilizing agent [58-61]. The property 
of pectin to form hydrogels makes its use in viscous and hydrated 
foods. Pectin is popularly used in fruit juices, jams, jellies, desserts 
and many other dairy products. The use of pectin as a stabilizing 
agent in colloidal dispersions differs between fruit drinks having high 
protein content, foods fortified with antioxidants, and acidic milk 
drinks [62,63]. Nowadays, pectin is getting attention because of its 
property to make films. Such films are used in the food industry to 
make edible coatings and packaging materials [61,64]. This ability 
of pectin defines its usage in the preparation of biodegradable food 
packaging. Edible coatings formed from pectin are biodegradable, 
renewable and biocompatible. Hence, such coatings are very useful 
for food preservation [65]. This concept is related to green chemistry 
and will help to support efforts of the sustainable world. Edible 
coating of food products has various applications such as it helps in 
extending the shelf life of the food, retaining the firmness, control 
water loss and minimize the decay in fruits [66]. However, still there 
are some drawbacks in the use of edible coatings for meat products. 
While scope of usage of such coatings has been realized for fruits and 
vegetables. Edible coating has many positive features when used to 
produce stand-alone films and also shows promising results when 
assimilated with active compounds, or even integrated with other 
polymers [67].

Applications of pectin in pharmaceutical industry
Pectin is an extremely valuable asset for the pharmaceutical 

industry. Pectin is found to have a positive effect on cholesterol levels 
in blood. It has been well-known that pectin helps to decrease blood 
cholesterol levels [68]. The intake of approximately 6g/day pectin has 
been shown to remarkably decrease the cholesterol levels in blood. 
Quantities below 6g/day of pectin have been reported to be ineffective 
[69].  Reports claim that a 13% reduction in blood cholesterol level has 
been observed within 2 weeks [70]. Pectin can also function against 
fatal cations, as a prophylactic agent. Studies have reported pectin 
to be highly efficacious in removal of mercury and lead from the 
respiratory and gastrointestinal organs [27]. Pectin is found to act as 
an anticoagulant when injected in the bloodstream for the prevention 
of haemorrhage [71]. In newborns and children, a blend of pectin and 
other colloids has been used considerably to aid diarrhea. Pectin can 
also act against E. coli as bactericidal agent as documented through 
in vitro conditions [22]. Pectin slows down the movement of food 
components in the intestine thereby slowing the speed of digestion, 
as an outcome the absorption of food usually decreases. The density 
of pectin coating inversely affects the food absorption as it forbids 
any exposure of food to the intestinal enzymes [72]. Pectin has a 
great proclivity for water binding and gives a feeling of fullness as 
well as simultaneous decrease in food intake. Pectin is a fascinating 
compound and can be put to pharmaceutical use in several ways, 
e.g. as an excipient, a vehicle for range of drugs in monitored-release 
operations. Gel coating and ionotropic gelation are some methods 
which have been used to develop pectin-based carrier systems. The 
ease of working with pectin and its chemically inert nature makes it 
an astounding candidate as an excipient for industrial applications. In 
the medicinal industry, the utilization of pectin in the manufacturing 
of controlled-release of drugs is ongoing for example, as a vehicle 
material in colon-targeted drug-delivery complexes [68]. While using 
pectin as a coating agent in drug delivery, the methyl content of 
pectin becomes an important factor. Mostly HM pectin are favored 
for encapsulation because of high molecular weight and low solubility 
in water. In cases where there is a risk of early erosion of gel coating 
LM pectin are used [73]. Recent reports have suggested that a blend of 
pectin with natural polymers like chitosan, or bioactive compounds, 
such as curcumin and cysteine can increase gel resistance, reduce 
water solubility, and reduce erosion of coating gels [74-76].

Future Trends of Research for Pectin
With the recent advancement in agro-processing for valorization, 

huge waste is continuously generated. Such biomass has several 
dimensions of exploration for various purposes. One of the most 
thought product is the pectin for lots of commercial opportunities 
in the food, nutraceutical and pharmaceutical industries. Different 
biomasses have different levels of molecular complexities and 
therefore, to recover pectin from such biomasses need optimization 
of process technology. We further need to explore the techniques and 
methods described above as well as to invent more economical and 
viable techniques for the same. Characterization of obtained pectin is 
very important in terms of its ultimate use for various applications. 
Research efforts should also be focused on the optimization of process 
in fortification of pectin based products.       

Conclusion
The market for hydrocolloids like pectin is growing rapidly. In 

this review, various properties of pectin and extraction techniques 
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along with their applications in pharmaceutical and food industry has 
been discussed. Some of the applications of pectin are well-known 
but many more are yet to be discovered. As the demand for pectin 
is increasing there is a need to upgrade the extraction processes in 
such a manner that the speed and reproducibility of the process can 
be enhanced. Currently there are a number of efficient and effective 
innovative technologies being studied for the recovery of pectin, 
including microwave, enzyme-assisted, ultrasound, subcritical 
water, high pressure and ohmic heating, with unprecedented levels 
of accomplishments. However, all these innovative techniques are 
helpful at laboratory scale only, but to achieve similar results upon 
scale-up is tricky. Also these novel technologies, when shifted on a 
larger scale will increase the cost and new challenges can arise. Thus 
proper knowledge and understanding of such innovative technologies 
is absolutely necessary for scaling them up. Therefore, for successful 
commercialization, these limitations should be contemplated in 
future work.   
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