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are frequently used to validate the repositioning. Upon validation 
of the hypothesis, the drug can leap directly into the phase II and 
III clinical trials. Moreover the availability of previous clinical and 
pharmacokinetic data along with the knowledge of the range of viable 
dose for that particular drug substantially reduces the risks associated 
with the further development of the molecule. 

Case Studies
One of the most promising instances of a repurposed drug is 

Zidovudine, which was originally designed for cancer in 1964 [2]. 
The drug was later found to be potent against HIV in 1985. Released 
in 1987 by Glaxo Smithkline as AZT, it became the first drug to be 
approved for HIV treatment. Mifepristone, a glucocorticoid receptor 
antagonist, is another example of a repurposed drug which was 
initially synthesized in 1980 in France by Danco laboratories as an 
oral abortifacient and was licensed for use in France in 1988 and in 
the USA in 2000 [3]. The Drug has been repositioned for psychotic 
major depression and bipolar disorder under the trade name of 
Corlux by Corcept therapeutics [4]. Aspirin is the most frequently 
used analgesic and antipyretic drug in the world. It was licensed by 
the German company Bayer pharmaceuticals in 1897. The drug was 
later found to possess anti-cancer properties (Table 1). Clinical trials 
held in 2011 studied the risk of cancer death among patients who 
regularly took aspirin for 4 years and patients who did not take the 
drug. It was found out that, aspirin use lowered the overall risk of 
cancer by 20%. Another example of repositioning is that of the acetyl 
cholinesterase inhibitor Galantamine which was licensed as Nivalin 
by Sopharma in 1960 as a treatment for paralysis due to Polio. With 
the licensing of the polio vaccine in 1962 and the gradual eradication 
of polio, Galantamine remained abandoned for years until 2000 when 
it was repurposed for Alzheimer’s disease by Johnson & Johnson 
under the trade name Reminyl. 

Conclusion and Future Directions
The Drug repositioning strategy is widely used as an alternative 

Editorial
Drug repurposing (also known as Drug repositioning) is an 

approach to drug design and development where known compounds 
are assigned to new indications. In this process one starts from 
already existing clinical drugs and assigns a new therapeutic target 
to the molecule. This approach is quickly gaining popularity both in 
industry as well as in academia as it banks upon the initial knowledge 
and investment which brought the drug to the market at the first 
instance. The major bottleneck of de novo drug development is 
that almost 90% of the identified novel molecules fail the clinical 
trials, resulting in the rise of the overall pharmaceutical R&D cost. 
The repurposing strategy helps to overcome such barriers. There 
are notable advantages of this approach over the traditional drug 
discovery process (Figure 1). Firstly, the repurposed drugs have 
already undergone clinical trials in the past and as a result their 
safety is ensured. Secondly, the repurposing strategy is cheap and 
takes much lesser time to develop a drug. Several pharmaceutical 
companies therefore endorse this low-risk repositioning strategy to 
improve their profits.

The Drug Repurposing Work Flow
The starting materials for a repurposing process are drug molecules 

which (a) have been approved for clinical use (b) have passed safety 
trial (Phase I) but failed to demonstrate efficacy (Phase II) for a disease 
(c) have been replaced by better therapeutics and (d) have become 
generic due to patent expiry [1]. The drug repurposing process can 
be broadly classified into the following two strategies: (i) Existing 
compound-novel target approach: It is based on the observation that 
many drugs bind to multiple targets. These secondary targets could 
be related to a different disease or physiological condition and (ii) 
Known mechanism-new disease: It is based on the observation that 
several biological processes and signaling pathways are relevant 
for more than one disease and hence the same drug which inhibits 
a biological process can exert effect on two different disease states 
[1]. Once a secondary target has been assigned to a drug, proof-of-
concept experimentation has to be performed to study the effect 
of the drug on the newly identified target. Computational biology, 
chemical biology, in vitro/cell-based assays and in vivo analysis 
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Figure 1: Schematic representation of the steps involved in Traditional drug 
discovery process vs. Drug repurposing with the salient features of both the 
processes.



Austin J Biotechnol Bioeng 2(3): id1047 (2015)  - Page - 02

Vishal Trivedi Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

approach to drug development since it lowers the risk of safety 
and toxicity and at the same time saves millions of dollars worth 
of pharmaceutical R&D. Over the decades many drugs have been 
repositioned and licensed for use in alternate indications and many 
more repurposed drugs are currently at the phase II and III clinical 
trials. The Drug repositioning approach is thus a simple yet powerful 
strategy to fuel pharmaceutical research and streamline the drug 
discovery process.
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Original Indication Repurposed Indication

Drug Disease Target/s Disease Target/s

(a) Drugs repurposed for Infectious diseases

Zidovudine Cancer Telomerase [2] HIV/AIDS HIV reverse transcriptase [4]

Amphotericin Fungal infections Cell membrane sterols [5] Leishmaniasis Signaling pathways for IFN-γ, IL-12 and 
TNF- α activation in host [6]

Cycloserine Urinary tract infections Peptidoglycan synthesis in 
E.Coli  [7] Tuberculosis Peptidoglycan synthesis in M. tuberculosis 

[8]

Clindamycin Skin infections/acne Ribosomal peptidyl transferase 
[9] Malaria Plasmodium apicoplast [10]

Paromomycin Amoebiasis 16S Ribosomal rRNA [11] Leishmaniasis Mitochondrion function [12]

(b) Drugs repurposed for Neurological diseases

Milnacipran Depression Serotonin–Norepinephrine re-
uptake [13] Fibromyalgia Serotonin–Norepinephrine re-uptake [14]

Atomoxetine Parkinson’s disease Noradrenaline re-uptake [15] Attention deficit hyperactivity 
disorder Noradrenaline re-uptake [16]

Galantamine Polio, paralysis Acetylcholinesterase [17] Alzheimer’s disease Acetylcholinesterase [18]

Ropinirole Hypertension Dopamine D2 receptor [19] Parkinson’s disease/ restless leg 
syndrome Dopamine D2 receptor [20]

Mifepristone Pregnancy termination Progesterone receptor [3] Psychotic major depression Glucocorticoid receptors [3]

(c) Drugs repurposed for Cancer

Aspirin Analgesic and antipyretic COX-1 and COX-2 [21] Colorectal cancer COX-2 inhibition and  down-regulation of 
NF-κB and AP-1 signaling [22]

Rapamycin Immunosuppressant mTOR signaling [23] Lymphoma and leukemia mTOR pathway/VEGF signaling [24]

Methotrexate Acute leukemia Dihydrofolate reductase [25] Osteosarcoma, breast cancer 
and Hodgkin lymphoma NF-κBandTNF-α signaling [26]

Nitroxoline Urinary tract infections ( P. 
aeruginosa) Bacterial biofilm formation [27] Bladder and breast cancer Cathepsin B [28]

Minocycline Acne vulgaris Bacterial protein synthesis [29] Ovarian cancer NF-κB and TGF-β1 signaling [30]

Table 1: List of repurposed clinical drugs for the treatment of various diseases.
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