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or crosslinking degree; and (e) they have low immunogenicity and 
toxicity [12,13].

Adhesiveness of the cross-linked system can be evaluated with 
rotational rheometry [14] and tensiometry [15,16], or other methods 
depending on the specific situation [17,18]. The criteria for success 
in many of these tests need to be both analyzed and discussed 
with selected clinicians who use or would potentially use these 
adhesives. As with any adhesive system, viscosity measurements 
are critical to characterize structural changes over time. Mixtures of 
two complementary different pre-polymers (e.g. PEG-amine with 
PEG-aldehyde) commonly display rheological synergism, in that 
the viscoelastic properties of the polymer blends are dramatically 
more solid-like than those of the constituent polymers. A relevant 
advantage of these formulations is that they can be easier to inject than 
less viscous single-polymer solutions. Adherence of mucoadhesive 
polymers to tissue is dependent upon obtaining close contact between 
the tissue and biomaterial (adhesive strength), and on the integrity of 
the mucoadhesive material (cohesive strength of the material) (Figure 
1). A covalent bond between the adhesive and the tissue (e.g. by the 
formation of imine bonds from polymer’s carboxylic acid and tissue’s 
amine) yields a stronger contact than weaker bonds (e.g. ionic bonds, 
Van der Waals  forces, hydrophobic interaction, etc.). Additionally, 
the attachment strength is highly dependent on the amount of the 
reactive groups presented on the biomaterial. Measurements of gluing 
times, strength, and effectiveness over time are therefore required as 
well as determining the failure point which is critical for assessing the 
success of the materials, depending on the clinical use for which they 
will be designed for [19].

Therapy of mucous surfaces often requires the delivery of medical 
substance. The ability to maintain a delivery system at a particular 
location for an extended period of time has many advantages for both 
local disease treatments as well as for systemic drug bioavailability. 

Designing mucosal-adhesive (mucoadhesive) materials are of 
great importance as an advanced tool for wound healing and covering, 
bleeding control, drug delivery and other medical applications [1]. 
Mucoadhesive polymers can be used to treat numerous diseases. 
For example: Canker sores heal faster with mucoadhesive tablets 
[2], mucoadhesive gel can be used to treat Periodontitis [3] or 
vaginal infections [4], while mucoadhesive eye drops for Glaucoma 
treatment [5]. Although various muco-adhesive formulations have 
been developed, tradeoffs between adhesive properties and ease of use 
occasionally limit their clinical use. Solid formulations such as tablets 
and films adhere very strongly to the mucosal tissue with a very long 
time of residency [6], however, they are often considered too rigid 
and lack flexibility [7]. In contrast, liquid formulations are very well 
tolerated by the patients, but adhere weakly to tissue due to their weak 
structural integrity. Thus, development of a new biomaterial that 
would combine the advantages of solid and of liquid formulations 
is desired: Convenient liquid formulation that solidifies in-situ after 
administration to yield a strong and long lasting adherence.

Currently used mucoadhesive polymers are either from a 
synthetic or a natural origin. The synthetic group mostly consists 
of polyacrylic acid-based polymers (e.g. polyacrylate) and cellulose 
derivatives (e.g. hydroxypropyl cellulose). Common examples for 
semi-natural polymers are chitosan and various gums like alginate 
and pectin. All of the above mentioned and other existing materials, 
are solids in their basic form that require a relatively high solvent 
content in order to serve as hydrogel forming agents [7].

High solvent (e.g. water) content is a major reason limiting the 
adhesive properties of currently used mucoadhesives, particularly 
when combined with material’s porosity [8]. Therefore, a neat 
(without solvent), yet liquid prepolymer system may overcome 
shortcomings in mechanical properties. Examples of such systems 
are multi armed polyethylene glycol (2000 Da) modified with various 
functional groups [9,10]. The advantages of multi armed, neat systems 
include: (a) they are liquid at room temperature [11] and, therefore, 
can be applied without the need of solvent; (b) although these 
polymers have low viscosity at room temperature, they can rapidly 
harden when crosslinked; (c) these polymers possess a higher number 
of potentially reactive end groups per molecule compared to linear 
polymers of similar molecular weight; (d) it is relatively easy to control 
the viscosity of these materials by varying the molecular weight and/
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Figure 1: Illustration of the mucoadhesion system; mixture of the two neat 
components leads to the formation of cohesion bonds inherent within the 
material, and adhesion bonds – of the same chemistry – between the material 
and the tissue.
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The relatively high water content of currently used mucoadhesives 
often leads to rapid drug release kinetics or to incompletion of drug 
release due to possible evacuation from the site. Regardless of the 
desired release pattern, drugs with poor water solubility may be hard 
to contain in an aqueous based hydrogel. The absence of solvent 
in the neat systems may allow the dissolution of water-soluble as 
well as of poorly water-soluble drugs [10]. Moreover, neat systems 
demonstrate a more sustained release pattern compared to typical 
hydrogels, which can be attributed to the relatively high polymer 
mass per unit volume [20].

In conclusion, designing a neat liquid mucoadhesive formulation 
that solidifies in situ could potentially revolutionize wound healing 
and regenerative medicine as known today. These biomaterials 
may also have far-reaching applications in other related fields such 
as tissue adhesives and tissue engineering. We expect that these 
polymers, which in the past have been rarely studied, will form the 
basis for the systematic investigation of neat systems and will also 
become a powerful tool for studying the therapeutic role of bio-
adhesive materials. Conjugation of these polymers with functional 
groups is expected to produce a large number of potential materials 
with a range of interesting and desired properties.
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