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Abstract

PHAs are biodegradable and biocompatible polymers synthesized and 
accumulated in intracellular compartments in several bacterial species. 
Recombinant E. coli systems were studied to produce PHB using metabolic 
engineering. In biofermentors, the critical points are the excess of fermentable 
sugars and the ratio of nutrients versus cell optical density. In order to allow 
production in biofermentors in automated system, sensors are envisaged to 
evaluate critical parameters such as sugar consumption, bacteria concentration 
and level of synthesis of PHA. In this review these parameters are discussed, 
as well as possible solutions.
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Complex organic by-products are a good opportunity, both 
from an environmental and an economic perspective, to produce 
Polyhydroxybutyrate (PHB) and organic acids; this was also the topic 
of a recently concluded EU project [17]. 

The advantages of using recombinant E. coli for the production 
of PHB include rapid growth, accumulation of PHB greater than 50% 
of cell weight [18-22], and the ability to utilize inexpensive carbon 
sources [23,24]. Key process operating variables (i.e., nutritional 
and aeration conditions) affect the biomass production rate and 
the PHB accumulation in the cells and its associated molecular 
weight distribution. Previous studies have demonstrated that PHB 
production using recombinant systems such as E. coli have been 
hindered upon scaling up in part due to the use of large amounts 
of oxygen required for high bacterial growth and PHB generation 
[25,26]. Recently, bubble gas microaeration and sparging has been 
shown useful to increase the oxygenation of the medium and the 
synthesis of PHB [27]. The process optimization may lead to high 
intracellular PHB accumulation (up to 95% of PHB/g of dry cell 
weight). Applications of PHA are coatings, packaging films and 
in bottling, medicine, drug delivery and bioplastic components 
[28,29]. The principal bottleneck is the cost of production, being 
higher than 2 dollars/kg, due to costs of running the fermentors, and 
for extraction and purification. Therefore, it is highly desirable to 
optimise bioreactor conditions to improve the yield, and to scale up 
the processing capacity of fermentors. 

Various companies produce PHB and PHB-V heteropolymers. 
TephaElast (by Tepha), Biopol (by Metabolix), Mirel (by Telles), 
Biogreen (by Mitsubishi), Enmat (by Tinan), Nodex (by Kaneka), 
Biocycle (by PHB Ind.). Of these, Telles has the highest production 
capacity, projected to reach 50.000 tonn/year in 2020, and SIRIM 
in Malaysia has a fully automated fermentor system [30]. In 2016, 
Metabolix announced the intention to sell the patents and assets for 
PHA to Cheil Jidang, making this company one of the strongest in 
this field for the next years.

Bioreactors are provided with sensors to monitor physico-
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Introduction
Polyhydroxyalcanoates (PHAs) are biodegradable and 

biocompatible polymers synthesized by bacteria and accumulated 
in intracellular compartments. Poly(3-Hydroxybutyrate) (PHB), 
have been considered to be good candidates for completely 
biodegradable polymers due to their similar mechanical properties 
to petroleum-derived polymers and complete biodegradability. PHB, 
the most common PHA, is synthesized by numerous prokaryotes 
as Cupriavidus necator (Ralstonia eutropha) [1], in response to 
limitation of nitrogen [2] in presence of high carbon sources. Several 
strategies are used to produce P(3HB), one-stage batch [3], two-stage 
batch [4,5] (Chen and Page 1997, Singhaboot and Kaewkannetra 
2015) or high-cell-density fed-batch cultures [6,7].

PHA can be synthesised and produced using recombinant 
microorganisms [8,9]. The use of recombinant bacteria enables to 
escape the need to limit nitrogen sources [10], while sugars (glucose, 
lactose, fructose) are continuously added to the medium to sustain 
exponential growth and PHB synthesis [11,12], as well as for shunt 
of PHB substrates by modification of glycolysis and other metabolic 
pathways [13,14].

In the composition of medium used to feed the bacteria, attempts 
have been made to reduce the costs by extracting the nutrients from 
wastes and byproducts. Significant research was performed on agro–
industrial even agro–waste streams as feedstock for fermentation. 
Researchers realized a high-productivity fermentation of P(3HB) 
[15], and implemented successfully a P(3HB) fermentation process 
using chicory roots (Cichorium intybus) [16] after hydroponic 
cultivation as a carbon source.
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chemical parameters, such as temperature probe and pH sensor (linked 
to pumps to add NaOH or HCl), stirring speed, air flux regulation or 
micro-bubble dispersion by sparging (BIOSTAT Q Multi-Fermentor 
Bioreactor System with dissolved oxygen probe), to provide dissolved 
oxygen, needed for aerobic growth. Turbidity (OD600) and glucose 
consumption need to be measured, at 0,4,8,12,24,48,72 and 96 h. PHA 
production need to be evaluated too, since after PHA accumulation 
bacterial cells are collected for PHA extraction.  In order to make 
the  process sustainable and economically convenient,  two  factors 
need to be optimised: high Optical Density (OD) of cell suspension, 
and continuous presence of 5-10% sugars.  The  bacteria need to 
reach an OD close to 50, to obtain an optimum ratio of cells/volume, 
exploiting the maximum volume capacity of bioreactors, without 
diluting the sugars.

Recently researchers have described a combined metabolic/
polymerization/macroscopic modelling approach, relating the 
process performance with the process variables, controlling the key 
process operating variables (i.e., nutritional and aeration conditions) 
affecting biomass production rate and PHB accumulation in the cells 
and PHB molecular weight distribution [31]. 

The potential of application of sensors and biosensors in the 
bioreactors applied to monitoring the exponential phase growth, the 
level of nutrients, and the synthesis of PHA is envisaged for a feasible 
and sustainable increase in production of bioplastics at industrial 
level. There is a need to control the availability of sugar substrate, to 
monitor the synthesis of PHB, an to check the viability of bacteria 
after exponential growth and at growth curve saturation. 

Sensors based on an enzymatic reactions can measure sugars 
concentration. This is made at laboratory scale using microwell 
plates and spectrofluorometer reads, based on enzymatic reactions. A 
sensor must be provided with an autosampler, a microfluidic pump, 
and a reaction chamber where enzyme produced NADH is quantified 
by its absorbance.

Microfluidic systems allow the controlled flow of operations 
like solvent and solute transport, valving, mixing, separation, 
concentration and detection with a dedicated biosensor (chemical, 
physicochemical, or biological method). All the components, from 
micro-reaction chambers, delivering small volumes through servo 
drives, high-precision mechanical components, and pumping systems 
with pulsation free fluid streams, syringe pumps, pump modules 
may be assembled in a Lab-on-Chip (LoC) system, under automated 
control, reducing operation times and operator errors.

Other types of sensors can  be used to determine bacterial 
concentration, alternative to optical density measures, unsuitable 
when working with such high density of bacteria. Biosensors for 
whole-cell bacterial detection have been recently reviewed [32-
35]. Various detection systems have been applied in bacteria 
quantification, from spectrophotometric detection, as Fourier 
Transformation-IR spectrometry (FTIR) and Reflectometric 
Interference Spectroscopy (RIfS), to Surface Enhanced Raman 
Spectroscopy (SERS) [36], to electrochemical biosensors, such as 
Alternate Current (AC) susceptometry measuring the magnetic field, 
suitable for bacteria concentration evaluation, to impedance-based 
systems, as Electrochemical Impedance Spectroscopy (EIS) [34,36].

Finally, a sensor needs to be dedicated to the detection and 
evaluation of PHB production. This is a critical point in industrial 
fermentation, since keeping the process for the shortest time possible 
is economically convenient, and bacteria that do not synthesise 
still consume sugars and keep the fermentors busy. Traditional 
PHB screening methods for PHB quantification in whole cells have 
exploited the Nile Blue staining and fluorescence of PHB containing 
bacteria [37]. Nile Blue dye stains PHB and other neutral lipids 
in bacteria. Quantitative assessments of PHB based on Nile Blue 
fluorescence involve various fixing steps, executed with an alcohol or 
acetone treatment, that facilitate the permeation of the dye through 
the membrane. The time required is between one and two hours and 
some manual passages. New methods have been proven less time 
consuming than standard Nile Blue colorimetric staining of PHB, 
and may be run in automatic, providing measures even over-night. 
Recently a more sensitive measurement has been obtained detecting 
bacteria fluorescence on a laser scanner (unpublished results) [17]. In 
this way, a colour scale was obtained, from blue, green, red, to white 
as the highest saturation signal. The chip slides loaded with serial 
dilutions of bacteria, are slightly dried for fixing the pellets to the 
glass, and incubated with the solutions for staining, centrifuged and 
loaded onto the scanner.

To this aim of automated detection of PHB in cells still in the 
fermentors, it is envisaged that SERS methods [36] could be efficiently 
applied not only to quantification of PHB, but also to discrimination 
of the types of polyhydroxyalkanoic acids produced. This may 
support the technologists and substitute the standard HPLC analyses 
for quality and quantity of PHA products.

The combination of these three sensors could make possible the 
exploitation of the full potential of bioreactors in optimization of the 
time of use (bacterial growth cycles) and maximization of bacterial 
synthesis of PHB in the shortest time possible.

Among the measuring methods or biosensors that can be applied 
to determine bacterial concentration, since the achievement is the 
determination of the maximum density, the methods most favoured 
for industrial applications are those cost effective and with few 
equipment maintenance problems. Therefore EIS, SPR and other 
applications requiring calibration curves are less favoured, while 
optical measurements requiring minimal liquid handling, such as few 
diluting steps and sample reproduction are most probable candidates.

Concerning the measurement of sugars to be quantified, there are 
already several methods on stick or test strip, exploiting viscosimetric 
[38] or amperometric detection of glucose oxidase activity. It has 
to be kept in mind that fermentors may need to work with higher 
concentration of sugars, proximal to 10% of the volume used. 
Nanoencapsulation of enzymes to read glucose concentration has 
been achieved [39].

Lab-on-a-chip (LOC) devices have a strong potential to be used 
in the field since they can be miniaturized and automated; being also 
potentially fast and very sensitive. There are still several issues to be 
solved before application in field applications, including the pre-
treatment of a sample, such as dilution of bacteria within the linear 
range of calibration curve, proper storage of reagents, full integration 
into a battery-powered or energy-failure proof system, range of 
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linearity measurements and comparability of each method, and 
easiness of operations, to allow the operator to overcome troubleshoots 
of the system. Each biosensor technique has its own advantages and 
disadvantages in terms of equipment required, sensitivity, simplicity 
and cost effectiveness, being optical sensors affordable and with 
maintenance procedures easy to be performed, and enzyme based 
sensors highly reliable and based on well established protocols in 
medical applications.

In industrial fermentation for production of PHB at cost-effective 
scale, in addition to sensors controlling the standard parameters 
temperature, pH, oxygen, three additional sensors are proposed, 
a sensor to evaluate bacteria concentration, and a sensor for sugar 
concentration, and a sensor to monitor PHB synthesis over the time 
and the amount of PHB produced. The perspectives and future vision 
for using biosensors for industrial synthesis of PHA and related 
processes based on industrial fermentors (bio based biochemicals 
industry) are sound, but not disclosed and discussed due to 
protection of intellectual property rights and economic interests. 
Therefore, it is requested from academia to disclose the applications 
of sensor components with a broader view, such as the production in 
fermentors of recombinant proteins or organic acids as intermediate 
products for the green chemistry.
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