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Abstract

Glutathione capped cadmium tellurium quantum dot was investigated as 
the fluorescence probe for the detection of hydrogen peroxide. In this detection 
regime, we regard QDs as only the signal transducer for the pseudo first-order 
reaction between hydrogen peroxide and glutathione. In this way the relationship 
between the rate of QD fluorescence decay and the rate of change in hydrogen 
peroxide concentration during the reaction were established and experimentally 
validated. Hence, the rate constants for the reaction were evaluated. The 
application of kinetic measurement to chemical analysis was presented and 
the results were comparable to those obtained from normal measurement at 
equilibrium. 

Keywords: Quantum dots; Hydrogen peroxide sensing; Optical sensors; 
Fluorescence; Reaction kinetics

glutathione molecules and hydrogen peroxide. The surface bound 
glutathione is oxidized to the corresponding disulphide as the main 
product; this change in surface characteristics disrupts the electron-
hole recombination process of the QD, resulting in the fluorescence 
quenching [12]. 

Mono-dispersed QDs sample is rather like a polymer, consists 
not of truly mono dispersed particles but of a range of particle 
sizes or molecular weights. Although the stoichiometry of the 
reaction between H2O2 and free glutathione in solution to give 
the corresponding disulphide is well understood, there are still 
many uncertainties regarding to using QDs as a reagent for 
H2O2measurement. Further, the degree of QD surface disruption (i.e. 
the amount of glutathione reacted) to effect measurable fluorescence 
change has not been established. Hence the reaction stoichiometry 
between H2O2 molecules and QD particles is not known. Therefore, 
it is necessary to establish the relationship between the measured QD 
fluorescence change and the change in H2O2 concentration to validate 
the use of QDs for the detection of H2O2. 

In this work we have synthesized glutathione capped CdTe 
quantum dots for the study of the fluorescence degradation of QDs 
by H2O2. A kinetic model is proposed for a pseudo first order reaction 
with respect to H2O2; in which the rate of change of QD fluorescence 
intensity is related to the rate of diminishing H2O2. Experimental data 
were then used to verify the model and evaluate the rate constants.

Experimental
Chemical s and materials 

All the chemicals used were of analytical grade. Tellurium (v) 
Oxide 99%, citric acid trisodium salt dihydrate 99%, cadmium 
chloride 99%, sodium borohydride 98%, hydrogen peroxide 30%, 
glutathione,dipotassium hydrogen phosphate, dihydrogen potassium 
phosphate and sodium hydroxide were purchased from Acros 
Chemicals, USA. Milli-Q water (Millipore Co., Billerica, MA, USA) 
was used for all experiments. 

Introduction
Hydrogen peroxide is an important metabolic by product of various 

physiochemical and pathological processes that involve molecular 
oxygen. There are many circumstances where the concentration 
of hydrogen peroxide needs to be measured. Cellular metabolism 
process involves reduction of molecular oxygen to produce hydrogen 
peroxide. High concentration of H2O2 can produce reactive oxygen 
species, which potentially causes DNA impairment and propagate 
cancer [1-3]. Enzymes such as oxidases produce hydrogen peroxide 
as a byproduct, [4] hence it is also used as a principal indicator for the 
detection of a range of important biomolecules, including glucose, [5] 
cholesterol [6] and triglyceride [7]. 

Many different sensing techniques have been used for the 
detection of H2O2 [2,8]. Among these the fluorescence approach 
[9,10] offers rapid measurement and excellent sensitivity, and the 
technique has been reported to be used for single molecule tracking 
[9,11]. The recent emergence of colloidal semiconductor quantum 
dots has brought significant advancement in fluorescence based 
sensing [12,13]. QDs have unique size dependent fluorescence 
emission with narrow emission peak as a result of the quantum 
confinement effect. Contrast to organic dyes, QDs offer higher photo 
stability, high fluorescence quantum yield and they can be excited 
by broad excitation wavelengths [14]. Further, the physical and 
chemical properties of QD nanocrystals can be tuned by a selection of 
capping molecules with specific physical and chemical properties [15] 
which, among other things, provide the QDs with water solubility, 
biocompatibility and high quantum yield [16]. 

Glutathione is a natural antioxidant that regulates the redox state 
of biological system [17] Owing to its biocompatibility, glutathione 
has been used as capping agent for QDs for use in bio-imaging and 
sensing applications [18,19] QDs capped with thiols are sensitive to 
oxidizing agents such as hydrogen peroxide; hence they can be used 
as chemical sensor to detect these oxidants. The detection of H2O2 
by QDs is attributed to the reaction between the surface bound 
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QD Synthesis
Glutathione (GHS) capped cadmium tellurium Quantum 

Dots (QDs) with red emission was synthesized in-house following 
reported procedure with modification [20]. In brief, eight mL of 
0.04 M cadmium chloride was added to in a round bottomed flask 
containing trisodium citrate dihydrate (0.2 g), glutathione (0.1 g), 
TeO2 (0.01 M, 2 mL) in 65 mL of water.NaBH4 (0.1 g) were added with 
stirring. The mixture was reacted at 90 oC under open-air conditions 
for a certain period of time. The obtained QDs were precipitated with 
1-propanol and the precipitates were separated by centrifugation and 
were redissolved in50 mM phosphate buffer solution (pH 7.2). The 
precipitation was repeated three times in order to eliminate the free 
glutathione ligands from the CdTe QDs colloids.

Characterization of QDs
Fluorescence spectra were obtained with Fluoromax-4 

Spectrofluorimeter, Horiba Scientific; uv-vis spectra were obtained 
with Cary 300 UV-VIS Spectrometer, Agilent Technologies; infra-
red spectra were obtained with Cary 600 Series FTIP Spectrometer, 

TEM data were obtained with HR-STEM Transmission Electron 
Microscope Tecnal G2 F20, FEI Company, USA.

Equilibrium state H2O2 measurement
Buffer solution and hydrogen peroxide solutions were made 

up in Milli-Q water. QDs solution (0.238 g/L) was made up in 10 
mM potassium phosphate buffer adjusted to pH 7.2. 100 mM H2O2 
stock solutions were used for analysis. Aliquots of 5, 10, 15, 20, 30, 
40, 50 and 60 µL of 100 mM freshly prepared H2O2 stock solution 
were added into 25 mL QDs solution in a 50 mL conical flask with 
continues stirring. After each addition of H2O2 the reaction was 
allowed to proceed for 10 minutes before fluorescence analysis. An 
excitation wavelength of 420 nmwas used to obtain the all emission 
spectra. 

Kinetic measurement 
In brief, a series of H2O2 standards with concentrations of 1.5, 

3, 6, 12 and 24 mM were made up in Milli-Q water from a 0.6 M 
H2O2 stock solution. 10 µL of H2O2 standard was added into a 1 mL 
cuvette, followed by 1 mL of QDs solution (0.238 g/L). The change of 
fluorescence intensity at 595 nm was monitored by using an excitation 
wave length of 420 nm. A sampling rate of 10 data points per second 
was used and the data were exported to ExcelTM for analysis. 

Results and Discussion
Synthesis and characterization of QDs

The one pot synthesis method allows the control of the QDsize 
simply by monitoring the colour and emission spectrum of the 
product. Hence, QDs of different sizes were obtained with different 
reaction time. The uv-vis absorption and emission spectra of 
the products are presented in Figure 1 & 2 respectively. Table 1 
summarized the absorption and emission characteristics of the QDs 
obtained with different reaction time. The size of the QD products 
was estimated from the uv-vis absorption spectra using the method 
described in reference [21].

The initial product was obtained by heating the reaction mixture 
at 90 0C for15 minutes, which gave an absorption band with λmax at 
460 nm. As the reaction time increased, the resulting QD’s absorption 
band red shifted gradually to longer wavelengths and the final product 
gave an absorption band with λmax at 553 nm after heating for 115 
minutes (Table 1). The red shift in QD absorption band indicated an 
increase in band gap was observed and this inferred an increase in 
QD size due to quantum confinement effect. The fluorescence spectra 

Figure 1: UV-vis spectra of glutathione capped CdTe QDs obtained with 
different reaction time. 
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Figure 2: Emission spectra of glutathione capped CdTe QDs obtained with 
different reaction time. (Excitation: 420 nm).

Reflux time 
(min)

λmax 
Absorbance 

(nm)

λmax
Emission 

(nm)

Emission 
FWHM
(nm)

Calculated 
Size*
(nm)

15 460 480 55.2 0.87

35 480 505 55.1 1.8

90 495 552 55.3 2.3

105 531 578 55.1 3.1

115 553 602 55.1 3.4

Table 1: A summary of absorption and emission characteristics of glutathione 
capped CdTe QDs obtained by refluxing for different time. *The QD size was 
calculated from the equation D = (9.8127 x 107) λ3 - (1.7147 x 103) λ2 + (1.0064) 
λ - (194.84) described in reference [25].

*The QD size was calculated from the equation D = (9.8127 x 107) λ3 - (1.7147 x 
103) λ2 + (1.0064) λ - (194.84) described in reference [25].



Austin J Biosens & Bioelectron 1(2): id1010 (2015)  - Page - 03

King-Tong Lau Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

of the products showed similar trend, giving blue emission with λmax 
at 480 nm at the beginning and gradually red shifted to 602 nm at 
the end of reaction. No change in absorbance or fluorescence spectra 
was detected after the heating time was increased to 180 min. Hence 
it was assumed that maximum crystal size had been attained with 
the reaction parameters provided. A TEM image of the QDs with 
emission at 602 nm is shown in Figure 3. The QDs tend to coagulate 
on drying as shown by the presence of larger clusters; the size of the 
single QD identified from the image seems to agree with the calculated 
result. Presented in Figure 4 are the IR spectra of glutathione capped 
QD and glutathione itself. The disappearance of the –SH stretching 
band from the glutathione capped QD compared to pure glutathione 
proved that the binding of the capping agent to the CdTe crystal is 
likely to be via the thiol group rather than the acid or amine group, as 
both of which are still visible from the IR spectrum of the QD.

The QD product with red emission was selected for the kinetic 
study because the larger QDsare much easier to reproduce by the 
synthetic method we employed. 

H2O2 measurement at equilibrium
QDs are highly sensitive to physical or chemical alteration of 

its surface environment. The disruption of its surface bound ligand 
by chemical reaction will disrupt the electron-hole recombination 

process to result in emission quenching. H2O2 has been reported to be 
highly effective in oxidizing glutathione capped QDs to Glutathione 
disulfide (GHS-SHG) [22,23]. The overall reaction is [24].

H2O2 + 2GSH→GSSG + 2H2O    (eq. 1)

Figure 5 presents a set of fluorescence spectra recorded after 
adding small aliquots (5 to 10 µL) of H2O2 solution into 5 mL of 
QD solution to give final H2O2 concentrations in the bulk reaction 
mixture of 20 to 237 µM. The total volume (230 µL) of oxidant added 
was very small to avoid dilution of the bulk QD solution. After each 
addition, the mixture was allowed to react for 10 min to reach stable 
fluorescence intensity before the spectra (3 repeats) were taken. At the 
end of the calibration, the QD had lost 87% of its original fluorescence 
intensity, indicating very efficient quenching by H2O2. 

The data (change in intensity) were plotted against H2O2 
concentration to yield a linear line (R2 value of 0.9929) with a slope 
of 1795 cps µM-1 (Figure 6). The Detection Limit (DL) was calculated 
to be 3 µM by using the standard equation DL = 3.3σ / S, where σ is 
the standard deviation of the response and S the slope of the plot. 

Figure 3: TEM image of glutathione capped CdTe QDs with emission λmax 
at 602 nm.
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Figure 4: IR spectra of glutathione and glutathione capped CdTe QDs.
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Figure 5: The Fluorescence spectra recorded during H2O2 calibration that 
shows a decrease in QD fluorescence intensity with stepwise addition of H2O2 
solution. Spectra were recorded in triplicate 10 min after each addition of 
H2O2 solution. Excitation wavelength used was 420 nm.
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Figure 6: Calibration plot obtained from the data shown in Figure 5.
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The results show that glutathione capped QDs can provide highly 
sensitive measurement of hydrogen peroxide that could potentially 
be useful for in situ measurement of bioprocesses.

Kinetics of fluorescence degradation of QDs by H2O2

The fluorescence quenching was a result of the reaction between 
glutathione capped QDs and hydrogen peroxide; in which the surface 
bound glutathione was oxidized. The oxidation of surface bound 
glutathione molecules into the corresponding disulfide re-modified 
the QD surface which disrupted the electron-hole recombination 
process to result in the observed fluorescence quenching. Therefore 
in this detection scheme, the QDs can be seen to function as signal 
transducer for the chemical reaction between the glutathione and 
hydrogen peroxide.

There are two important parameters in this reaction that are 
not well established. Firstly, the loading of glutathione on the QD 
surface is not determined. Secondly, the degree of surface glutathione 
oxidation to effect QD fluorescence quenching is not established; 
which infer that the stoichiometry of hydrogen peroxide and QD 
reaction is therefore unknown. It has been verified that the measured 
degradation of fluorescence intensity of glutathione capped QDs is 
linearly related to the H2O2 concentration. It is therefore possible to 
make use of the QDs fluorescence degradation as a mean to elucidate 
the consumption of H2O2 in the reaction mixture. 

It was designed that in this detection process, very small amount 
(10 µL) of dilute H2O2 was added into a 1 mL of strong QD solution (ca. 
0.2 mg/mL). The overall concentration of QD and thus glutathione 
(bound on the surface of QD) are in large excess compared to that of 
the H2O2;hence the reaction can be regarded as a pseudo first-order 
reaction with respect to H2O2.

Kinetic model
This model was built on the understanding that the measured 

degradation of fluorescence intensity of glutathione capped QDs is 
linearly related to theH2O2 concentration and that the fluorescence 
intensity of QDs is linearly related to its concentration.

A simple kinetic model can be established with QD being in large 
excess and the reaction is pseudo first order with respect toH2O2. The 
rate of fluorescence change can be expressed as:

Rate of change in fluorescence intensity= , 2 2[H ][ ]  F= d Od F k k
dt dt

− =  

               (1)

Since ,,2 2
2 2

[H ] .[H ]d O k O
dt

− =                          (2)

Hence the experimental observed quenching rate is 

= [ ] [ ], ,,
2 2 2 2

F
. . H O  .[H O ] =  F(3)

d
k k k k

dt
− = =  

Where k, k’, k’’and K are constants.

Hence, 2 2
2 2

[H ]F=K.[H ] or Ok O k
F

             (4)

Therefore, the relationship between fluorescence intensity and 
H2O2 concentration is established. 

For a first order reaction, the observed rate of fluorescence decay 
is:

 [ ]F
 F(5)

d
k

dt
− =

Solving (5), we get: F= F0 exp (-kt)(6)

And ln F = ln F0 -k t (7)

 Plotting ln Fvs t of eq. (7) gives a linear line with the slopeas the 
observed fluorescence rate constant k. 

Verification of model and evaluation of rate constants
The experimental data for the quenching of QD fluorescence by 

a series of H2O2 concentrations from 25–200 µMare shown in Figure 
7. As expected, the fluorescence quenching appeared to be related 
to the initial H2O2 concentration. Higher initial H2O2 concentration 
quenched the fluorescence more rapidly and reached lower 
fluorescence intensity at the end of the experiment. 

To verify that the kinetic traces obtained follow exponential decay 
as predicted from a first-order reaction, i.e. eq. (7), [ln F= ln F0- k t], a 
plot of [ln F]vs [t] is shown in Figure 8. The plot yields a straight line 
for each of the H2O2 induced fluorescence degradation kinetic traces. 
From the slopes, the kinetic rate constants k(observed fluorescence 
decay) were evaluated, and summarized in Table 2.

0

100000

200000

300000

400000

500000

600000

700000

0 50 100 150 200 250

Fl
uo

rs
ce

nc
e 

In
te

ns
ity

 /C
PS

Time / s

blank

25 µ M

50 µM

100 µM

200 µM

Figure 7: Real time traces of degradation in QD fluorescence intensity by a 
series of H2O2 concentrations.
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With known value of k for each starting H2O2concentration, 
the real relationship between the fluorescence intensity and 
H2O2concentration can be elucidated from eq.(4), k F = K.[H2O2] at 
t = 0 or t = t½.

 t = 0: kF0 =K.[H2O2]0

t = t½:k F½ = K.[H2O2]½

At the half-life of the reaction i.e. when t = t½,then F = F½ = 1/2F0; 
and [H2O2]= [H2O2]½ = 1/2[H2O2]0.

For example, the fluorescence degradation trace induced by 200 
µMof H2O2; F0 = 604640 cps and k = 0.0071cps. s-1.

Hence,

K = k F0/ ([H2O2]0) = (0.0071cps. s-1) (604640cps) / (200µM) = 
21.46 M-1 s-1

Similarly, all K values for each of the starting hydrogen peroxide 
concentration were calculated and shown in Table 2.

Verification of the order of reaction
The rate constant can be used to evaluate the order of reaction:

Rate of reaction R= k. [H2O2]
x.[glutathione]y(8)

From eq. (4): k F = K.[H2O2]

⇒[H2O2] = (k ∕ K) F(9)

Substituting (9) into (8)

Rate of reaction R = (kx+1) ∕ K. [F]x.[glutathione]y(10)

[H2O2]/ µM k  /  s-1 K /  µM-1 s-1

0 0.0006 -

25 0.0019 45.95

50 0.0024 29.02

100 0.0036 21.76

200 0.0071 21.46

Table 2: The experimentally elucidated values of k, the (observed) fluorescence 
degradation rate constants and K, the rate constant related to hydrogen peroxide 
concentration.
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Figure 9: A plot of ln R verses ln F. The slope of 1 indicates a first order 
reaction.

ln (R)= (x+1) ln k – ln K + x ln F + y ln [glutathione] (11)

ln (R) = x ln F + K’(12)

Where K’ = (x+1) ln k – ln K + y ln [glutathione].

From eq.(12), by plotting ln (R) vs. ln F, the order of reaction can 
be revealed. Figure 9 is a plot obtained with fluorescence decay data 
induced by 200 µM of H2O2 at time t = 5, 10, 15 and 20 s. The Rate at 
time t was calculated by Rt= k.Ft.

The linear plot shown in Figure 9 gives a slope of 1 which indicates 
that the reaction is pseudo first- order with respect to H2O2.

Kinetic based chemical analysis
The usual mode of chemical measurement mainly relies on 

performing standard calibration at (pseudo) equilibrium in a time-
frame of tens of seconds to tens of minutes. Similar procedure is 
used for the actual analysis of unknown sample. This method is only 
practical for reactions that reach equilibrium rapidly to avoid long 
analysis time, e.g. amperometric measurement, and for reactions that 
reach completion rapidly, e.g. enzymatic reactions or for reactions 
that are provided with a well-engineered environment to allow rapid 
reaction completion e.g. micro fluidics. 

 In many cases, it is essential to accurately control the time at 
which the data are taken or it invariably will introduce error into 
the analysis. For example, in the present study, it is feasible to use 
the pseudo-equilibrium data to perform calibration as shown in 
Figure 10. In this plot, the fluorescence intensity data from a specific 
time instance (100s) for all fluorescence degradation traces was 
selected for the calibration plot. An excellent straight line with R² 
= 0.9985was obtained. However, it is easy to imagine that if a one-
point measurement is performed instead of a kinetic trace, the error 
associated with the time at which the data is collected could be quite 
large. To reduce such error, it is necessary to increase the analysis 
time to well beyond 3 minutes, (10 minutes, in the case of data shown 
in Figure 6) which is rather slow.

Figure 11 presents the use of kinetic data for quantitative chemical 
analysis. For better comparison, -k shown in Table 2 were plotted 
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against H2O2concentrationwith base-line corrected to zero. A linear 
line was obtained with a slope of 3 x 10-5s-1 µM-1. This result suggests 
that kinetic data has significant analytical value and benefit. The 
measurement of pseudo-equilibrium data can be prone to error unless 
extreme care and precautions are taken for reagent mixing and data 
collection. Whereas the rate constant k is determined by using data 
collected within a specific time frame rather than a discrete instance 
of time, it is hence a more robust method of analysis. However, there 
are drawbacks in using kinetic method for analysis. It is necessary 
to control the temperature, to reduce sample volume to shorten the 
analysis time and the mixing has to be instantaneous.

Conclusion
The use of glutathione capped QDs as fluorescence probe has 

been validated using kinetic approach. A kinetic model to describe the 
relationship between the changes in observed fluorescence intensity 
with the decrease in hydrogen peroxide concentration has been 
established and validated. Hence the rate constants for the reactions 
were determined. It is suggested that the kinetic rate constant could 
be used for qualitative analysis and the results is comparable to those 
obtained from equilibrium approach. 
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