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Abstract

Photodynamic Therapy (PDT) is minimally invasive therapeutic technique 
based on effective transfer of energy from the excited photosensitizer to the 
oxygen molecules present in tissues. Subsequent generation of reactive oxygen 
species is responsible for the cell damage, through apoptosis or necrosis. The 
use of phthalocyanines and their metal derivatives (MPcs) in this field is not new, 
and has been studied extensively around the world. Among other phthalocyanine 
derivatives, AlPcs are particularly interesting owing to the capability of Al for axial 
ligation. Alongside peripheral substitution, axial ligation provides the opportunity 
of linking biologically benign ligands to the AlPc core forming a variety of 
derivatives possessing variable cytotoxic efficacies. This review focuses on the 
photophysical and photochemical properties, cellular uptake, in vitro and in vivo 
photodynamic cytotoxicity of AlPc derivatives. In addition, photodiagnostic and 
antimicrobial PDT applications of AlPcs have been discussed.

Keywords: Photodynamic therapy; Aluminium phthalocyanine; 
Photodiagnosis; Antimicrobial PDT; cytotoxicity; Photophysical and 
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[13]. Axial ligation also provides the opportunity of facile conjugation 
of biomolecules for receptor mediated targeting of PS.

Over the years a large number of AlPcs have been synthesized and 
studied for photodynamic activity and diagnostic imaging against a 
number of tumors [14,15]. Much attention has been devoted to the 
development of modified sulfonated AlPcs to improve their PDT 
efficacy. Although distilled water formulation of mixture of sulfonated 
AlPc (Photosens) has been approved in Russia to cure a range of 
oncological and non-oncological lesions. However, it requires further 
refinement to overcome post-treatment skin sensitivity of patient. 
After PDT treatment using this PS the patient has to remain in 
dark for 6 to 10 weeks [16]. To cope with this deficiency the AlPc 
derivatives have been modified in a number of ways e.g. attachment 
with biomolecules, encapsulation into biocompatible polymers and 
conjugation with nanoparticles or quantum dots etc. To the best 
of our knowledge till now there is no compilation in the literature 
highlighting the potential of AlPc derivatives in PDT, antimicrobial 
PDT and photodiagnosis of neoplastic tissues. Therefore, we attempted 
to discuss the photophysical/photochemical, photodynamic and 
imaging properties of the AlPcs against various cell lines performed 
during last two decades. To reach the logical conclusion only those 
publications have been included which indicate in vitro and/or in vivo 
experimental results. 

Photophysical and Photochemical 
Properties 

Photophysical and photochemical properties such as singlet 
oxygen quantum yield (ΦΔ), fluorescence quantum yields (Φf) 
as well as fluorescence and singlet/triplet lifetimes, are the initial 
parameters for the recognition of an effective diagnostic marker 
and PDT sensitizer (these properties of macrocyclic complexes have 
been reviewed by a number of times e.g.) [17,18]. These parameters 

Introduction 
Photodynamic Therapy (PDT) is now regarded as the new 

emerging minimally invasive therapeutic technique to cure various 
lesions especially solid tumors. It is also equally effective in many 
non-oncological treatments in medical field [1,2]. It requires 
Photosensitizer (PS) to generate the Reactive Oxygen Species (ROS) 
responsible for cell damage. Despite the fact that none of the PS 
meets the criteria of an ideal sensitizer [3,4], a moderate number 
of compounds are commercially available [4] in the market with 
Photofrin® being the pioneer one. Among other classes of macrocyclic 
complexes (see ref. for comparative details of macrocyclic classes) 
[5], phthalocyanines [6,7] (Pcs) are extensively explored to formulate 
third generation photosensitizers [8]. This is due to enormous 
possibility of modification in the Pc macrocycle which leads to a vast 
variety of complexes. In addition to peripheral substitution the metal 
phthalocyanines (MPcs) may be axially modified in the presence of 
metals allowing axial substitution, with variable photodiagnostic and 
photodynamic therapeutic properties. 

Photophysical and photochemical properties [9] (fluorescence, 
singlet and triplet quantum yields and lifetimes, singlet oxygen 
quantum yield etc.) provide the primary data to establish the 
potentiality of a substance as an effective PS. In case of Pc complexes, 
these parameters can be tuned by either peripheral modification 
of macrocycle and/or insertion of metal inside the ring. The Pc 
macrocycle can accommodate almost all metals present in the periodic 
table; however for PDT point of view MPcs containing Zn, Al or Si as 
central metal have been studied extensively owing to their improved 
photophysical and photochemical properties [10-12]. MPcs capable 
of axial ligation show promising results in PDT and imaging due to 
their reduced tendency of aggregation at cellular level thus improving 
the ROS generation capability through maximal absorption of light 
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are affected by the presence of central metal [19,20] and peripheral 
substituents [10,21,22] on the Pc macrocycle. For example, insertion 
of a diamagnetic metal is responsible for higher ΦΔ of Pcs as compared 
to the corresponding molecules containing paramagnetic metals [10]. 
This is due to the formation of comparatively stable triplet excited 
state of diamagnetic MPc which enables the energy transfer from 
excited PS to the ground state oxygen molecule.

Unsubstituted AlPcs are in fact lipophilic in nature, therefore 
show aggregation in biological tissues and aqueous solutions. 
Consequently the AlPcs show lower values of photophysical and 
photochemical parameters. Aggregation may be minimized either by 
encapsulation or conjugation of the PS with nanomaterials, quantum 
dots and liposomes which in turn improves these properties. 
As observed, ClAlPc can be dispersed in water using Polymeric 
Nanoparticles (PNPs) thereby hampering the aggregation in aqueous 
medium [23]. Nanocapsulation of ClAlPc shows red shift in Q-band, 
increased the triplet lifetime (80 µs to 141±0.06 µs) [24], and ΦΔ 
(0.30-0.80) [25]. Similarly surfactants also improve the ΦΔ values of 
oligomeric carboxy AlPc up to two fold [26]. 

Quantum Dots (QDs) are capable of transferring energy 
to the Pc macrocycle through Fluorescence Resonance Energy 
Transfer (FRET), thus altering the photophysical parameters and 
photodynamic efficacy [27] of the Pcs. In general decrease in Q-band 
maximum and Φf is noticed [28] whereas increased ΦΔ values are 
observed for AlPcs conjugated with CdTe-QDs [28,29]. Similar 
results are reported for sulfonated AlPcSn attached with Human 
Serum Albumin (HSA) [30].

Cellular Internalization and Localization 
Preferential uptake of the drugs by tumor tissues is crucial 

factor to be under taken while designing the third generation PS. 
Transportation of PS from blood stream to the cell is affected by the 
interaction of sensitizer with cell membrane which is lipoprotein in 
nature [31,32]. It has been observed that active transport of PS through 
cell membrane is facilitated by the metal-phosphate coordination of 
the lipid bilayer of cell membrane [33] while fluoride or hydroxyl 
ions limit this process [32,34,35]. This might be due to inhibitory 
effect of these ions on the metal-phosphate binding. Lipid binding 
is another essential factor which helps traversing the PS through cell 
membranes. It has been confirmed that cationic AlPcs efficiently 
bind to the phospholipid membranes as compared to the anionic and 
neutral Pcs such as AlPcS4 and ZnPc. This interaction is related with 
the presence of slightly negatively charged nature of the membranes 
and coordinating capability of the central metal in MPcs [34].

Sulfonated AlPcs demonstrate higher cellular uptake by the 
tumor tissues as compared to the porphyrins of similar lipophilicity 
whereas increasing lipophilic character in sulfonated AlPcs increases 
the cellular internalization in vitro [36]. 

Encapsulation of sensitizers in nanoparticles (NPs) not only 
reduces the aggregation but also takes advantage of Enhanced 
Permeability and Retention (EPR) effect [37], which demonstrates 
the higher cellular internalization of larger particles by the tumor cells 
due to their leaky vasculature. Therefore researchers are exploiting 
the nanoparticles for targeted drug delivery to the tumor tissues. 
The ClAlPc encapsulated in polymeric nanoparticles are taken up in 
higher concentration in tumor tissues than non cancerous cells [23]. 

After cell internalization, the sensitizers are localized in different 
cellular compartments depending on the lipophilic character of PS. 
The successful uptake and intracellular localization are important 
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Figure 1: Schematic of AlPc derivatives conjugated with biomolecules, NPs and PNPs.



Austin Biomol Open Access 1(2): id1010 (2016)  - Page - 03

Zafar I Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

factors for effective PDT [38]. The AlPcs are localized in different 
cell organelles depending on the cell line used in vitro, e.g. the 
hydrophobic ClAlPc [39] is distributed throughout the cytoplasm 
of human meningioma and RR1022 cell lines [39] whereas the 
hydrophilic sulfonated Pcs are localized in the lysosomes [40]. More 
hydrophilic AlPcS4 aggregated in the cells in vitro, show subcellular 
relocation during in vivo experiments observed through enhanced 
fluorescence [39]. In general the nuclei are not among the primary 
seats of location by the PS [41].

In Vitro and In Vivo Cytotoxicity 
In vitro photocytotoxicity is essayed followed by incubation of 

the tumor cell line with sensitizer at variable concentrations. The 
cell viability is determined in dark or under laser light irradiation 
of wavelength equivalent to the Q-band of the sensitizer at different 
power [42]. The cellular concentration, localization, absorptivity, 
intensity and wavelength of incident light, oxygen concentration, 
aggregation and physical properties of the PS are among the few 
parameters which determine their efficiency during PDT. Lipophilic 
ClAlPc has been found potent sensitizer against various cancer cell 
lines [40,43] however it also alters the morphology of cytoplasm or 
nuclei of the normal HeLa cells in vitro [43]. Evaluation through 
MTT essay proved ClAlPc as better PS in comparison with 
hydrophilic AlPcS1, AlPcS4 and Hematoporphyrin Derivative (HpD) 
against human meningioma cells [40]. Cytotoxicity of the sulfonated 
AlPcs depends on the lipophilic character of the complex which is 
controlled by degree of sulfonation and decreases with increasing the 
sulfonic groups on the macrocycle. As determined by using a number 
of cell lines, the in vitro photocytotoxicity of AlPcSn decreases in 
the order AlPcS1 >AlPcS2 >AlPcS3 >AlPcS4, however this sequence 
may not be followed in in vivo studies using the same cell line [44]. 
Contrary to the above mentioned observations AlPcS2 was found to 
be more potent than monosulfonated analog and Photofrin [45] in 
vivo, due to its amphiphilic nature. In addition to its photodynamic 
applications, AlPcS2 was also tested as a potential sonosensitizer for 
sonodynamic therapy against G361 melanoma cells sensitized by 
ultrasonic treatment of 1MHz frequency at 2W/cm intensity [46]. 
The oxidative cell damage affected by sulfonated AlPcs is generally 
through apoptotic mechanism as confirmed by flow cytometry [43].

Introduction of the hydrophobic functional groups on the Pc 
macrocycle generally improves the PDT efficacy on effect of decreased 
aggregation of PS and increased cellular internalization. Reduction 
in the hydrophilic character in AlPcS4 was achieved by substitution 
with 4, 8, 12 or 16 carbon long aliphatic chain. Complete regression 
of EMT-6 mouse mammary tumor cell line implanted in Balb/c mice 
was observed with the Pc containing longest chain [47]. In another 
experiment in vivo photo-inactivation of the EMT-6 tumor cells 
increased by a factor of ten by decreasing the number of sulfonic 
groups from four to two [48]. Photosensitizers also damage the blood 
vessels and it has been deduced that cancer tissue vasculature is more 
susceptible to PD damage and increases with decreasing the degree of 
sulfonation [49].

Receptor mediated targeting of tumor cells has led the 
modification of photosensitizers with biomolecules to be recognized 
by the specific tumor tissues containing overexpressed biomolecule 
receptors [50]. Several biomolecules such as carbohydrates, peptides, 

albumins, oligonucleotides and lipoproteins have been attached 
with Pcs aimed at targeted cellular internalization [51]. AlPcS4 has 
been conjugated with a number of receptor oriented peptides or 
proteins (Figure 1) such as bombesin [52], Monoclonal Antibodies 
(MABs) [53] and RGD [54]. The conjugates were taken preferentially 
by the tumor tissues due to higher binding affinity with neoplastic 
cells as compared to the normal cells. AlPcS4-bombesin conjugate 
significantly reduced the cell viability of human prostate cancer 
cell PC-7 in vitro, when compared with AlPcS4 at concentration 
range between 1-20 µM. Higher toxicity of the conjugate can be 
correlated with its enhanced uptake mediated by Gestrin Releasing 
Peptide Receptors (GRPR) [52] present in the prostate cancers, even 
at very early stage [55]. Overexpression of integrin receptors [56] 
was targeted by AlPcS4-RGD conjugates in vitro as well as in vivo. 
Arginine-glycine-aspartic acid (RGD) is a peptidic sequence present 
in adenovirus penton base proteins which binds with great affinity 
and high specificity to integrin receptors [56]. The AlPcS4-RGD 
conjugate was equally effective against human cell lines expressing 
integrin receptors (A549 and HEp2), and one lacking RGD receptors 
(EMT-6). In this case the regression of EMT-6 is due to more photo 
susceptibility of these cells [54].

Receptor mediated internalization of albumin by specific cell 
lines such as monocytes, macrophages, hepatocytes etc., containing 
albumin binding proteins is exploited for drug delivery [57]. Bovine 
Serum Albumin (BSA) is an alternative to Human Serum Albumin 
(HSA), to be employed as drug delivery vehicle for human subjects. 
Therefore BSA is coupled to photosensitizers to target the tumors 
containing phagocytic cells e.g. J774. AlPcS4-BSA was tested for singlet 
oxygen production, receptor-mediated cell uptake and phototoxicity 
toward J774 and non-phagocytic EMT-6 cells. Competition 
studies of the conjugate showed higher cellular concentration and 
photocytotoxicity towards phagocytic cells [33]. Similarly Epidermal 
Growth Factor (EGF) conjugates of ClAlPcS2 were synthesized to 
determine the cytotoxic activity against human breast carcinoma 
MCF-7 in vitro [58]. Liposomal formulation of ClAlPc has been 
utilized for targeted delivery of PS in breast [59] and oral squamous 
cell [60,61] carcinoma. Dose dependent reduction in cell viability 
of Oral Squamous Cell Carcinoma (OSCC-3) was detected in vitro 
[60] and in in vivo experiments [61] using liposomal formulations. 
Polymeric Micelles (PMs) are also used as pH responsive drug delivery 
vehicles. PMs consisting of N-isopropylacrylamide (NIPAM) show 
low cytotoxicity than surfactant Cremophore EL (CRM) when tested 
on intradermal EMT-6 tumor implanted in Balb/c mice. Unlike 
the above observation, in vivo uptake of PM formulation of ClAlPc 
showed similar uptake in tumor tissues but improved photodynamic 
activity than its formulation in CRM [62]. 

Nanoparticles (NPs) are employed as carriers of photosensitizers 
due to their stability and biocompatibility in tissue fluids as well as 
their potential to deliver the PS to the target. Phthalocyanines have 
been conjugated with various NPs including gold, polymeric and 
silica based nanomaterials as well as Quantum Dots (QD) to improve 
the drug availability and internalization in the tumors [63] for PDT 
and diagnostic applications. Quantum dot conjugated aluminium 
phthalocyanines easily penetrate into human nasopharyngeal 
carcinoma and cell damage proceeds through FRET mediated PDT 
when the conjugates are excited at 532 nm laser irradiation [27]. 
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It has been observed that photodynamic activity of ClAlPc is 
compromised when it is encapsulated into polymeric nanoparticles 
such as poly(methyl vinyl ether-co-maleic anhydride, PMA/MA), 
poly(D,L-lactide-co-glycolide), poly(D,L-lactide) and polyethylene 
glycol-block-poly(D,L-lactide). For example, ClAlPc-NP(PMA/MA) 
proved to be cytotoxic against murine cancerous and noncancerous 
(4T1 and NIH/3T3) cells and human breast cancer cells (MCF-7) 
even at 0.25 µM [23] concentration. This indicates nonspecific uptake 
of the composite by these cell lines in vitro. Therefore, polymeric 
encapsulation of AlPcs may not be suitable for targeted oncological 
applications.

Photodiagnosis
 Clinical diagnosis and location of tumors is the crucial event 

in successful photodynamic treatment. A number of imaging 
techniques are applied for the distinction between neoplastic and 
normal tissues [42,64]. The photodiagnostic imaging involves the 
utilization of fluorescent markers, enabling the location of malignant 
tissues through photoluminescence. Recently Raman spectroscopic 
techniques such as confocal Raman imaging and Raman 
microspectroscopy, were used to distinguish tumors in human breast 
cells. Determined by Raman spectroscopy, the distribution of AlPcS4, 
was significantly higher in the cancer cells than that in normal tissues 
[65,66]. AlPc derivatives have been studied as fluorescent markers for 
the flow cytometric imaging of the malignancies in in vitro and in vivo 
experiments. The in vivo imaging is advantageous being rapid and 
more reliable, therefore has been employed for the pharmacokinetic 
studies of the PS [67]. 

Preferential accumulation of the sensitizers in the tumor tissues 
and its fluorescence quantum yield play pivotal role in photodiagnostic 
process. The AlPcs are preferentially localized in tumor cells as 
compared to the ZnPc, however increasing hydrophilicity through 
sulfonation lowers the tumor over normal tissue fluorescence ratio, 
indicating lower tumor uptake of tetrasulphonated Pcs [68]. On 
the other hand, introduction of hydrophobic moieties such as long 
aliphatic chains on the periphery of AlPcSn makes the PS amphiphilic 
in nature thus improving its photodiagnostic and photodynamic 
activity [69]. That’s why AlPcS2 has been most widely used for the 
imaging of the premalignant and malignant disorders reaching to 
maximum fluorescence in 2-10 hrs following injection [70]. 

Gold nanoparticles (AuNPs) have been extensively studied in 
biomedical applications due to their nontoxic behavior towards living 
cells. AuNPs conjugated with AlPcSn enhance the fluorescence up 
to 150 times than unconjugated Pc. In vitro experiments revealed 
excellent fluorescence of AlPcS-AuNP conjugates when excited at 405 
nm (single photon excitation) or 800 nm (two photon excitation) laser 
irradiation [71]. Covalently conjugated carboxylated AlPcs with silica 
shell NPs were targeted towards the folate receptor positive cancer 
cells. The conjugates were taken up preferentially by these tumor cells 
due to the presence of folic acid used for the surface modification of 
the silica nanoshells [72]. The high accumulation of the conjugates 
in the tumor tissues and subsequent high fluorescence makes them 
multifunctional theranostic agents to be employed both in PDT and 
diagnosis [72]. It is noted that liposomal formulation of AlPcS4 and 
ZnPc against RR 1022 cell line showed significant necrosis by ZnPc. 
Therefore, AlPcS4 being nontoxic in liposomal formulation proved 

more feasible for diagnosis [39].

Antimicrobial Activities 
PDT is now emerging as the treatment modality against a number 

of microorganisms including pathogenic bacteria and viruses. 
Aluminum phthalocyanines have been extensively employed in 
antimicrobial PDT (a-PDT) as effective photosensitizers. In vitro and 
clinical studies performed against cariogenic bacteria (Streptococcus 
mutans and Lactobacillus acidophilus), using cationic liposomal 
formulation of ClAlPc showed preferential uptake of the sensitizer 
in the bacterial cells as compared to the eukaryotic dental pulp cell 
line. Clinical investigations proved the overall 82% regression of the 
bacterial cavities after photodynamic action [73]. 

Cutaneous leishmaniasis is an infectious disease caused by a 
protozoan belonging to the genus Leishmania. Phthalocyanines 
such as ZnPc and AlPc derivatives have been studied as promising 
cytotoxic photosensitizers against Leishmania species in vitro as well 
as in vivo. Cellular regression in both species of Leishmania namely 
L. major and L. braziliensis was observed when the cell cultures were 
treated with AlPcS4 at 1.0µM or 10.0µM concentration followed by 
one hour incubation and irradiation with 659 nm laser at 5 or 10 J/
cm². L. braziliensis showed the highest mortality rate (~99%) after 
treatment with 10.0 µM concentration of the sensitizer at 10 J/
cm² of laser light dosage [74]. ClAlPc also effectively inhibited the 
growth of L. chagasi and L. panamensis promastigotes on exposure of 
visible light (670 nm). The Pc was especially potent against L. chagasi 
promastigotes with inhibitory dose 50 (ED50) concentration values 
of 0.0033, 0.0083 and 0.0093 µM upon 10.0, 5.0, and 2.5 J/cm2 light 
intensities respectively [75]. 

Nanoemulsion of chloroaluminum phthalocyanine (ClAlPc/
NE) has been successfully examined to photoinactivate the fungus 
Cryptococcus neofromans [76] and Staphylococcus aureus [77] 
bacteria. Both melanized and nonmelanized cells of C. neoformans 
were photokilled with PS in dose dependent manner, however the 
melanized species showed more tolerance than others due to the less 
porous cell walls and reduced penetration of light through melanin. 
Two strains of S. aureus, antibiotic susceptible (MSSA) and resistant 
(MRSA), were incubated with different delivery systems containing 
ClAlPc. Photosensitizer formulated with cationic nanoemulsion 
(ClAlPc/NE) and free ClAlPc were particularly effective in 
photokilling the both strains of S. aureus, at light dosage of 25 J/cm2 
for MSSA and 50 J/cm2 for MRSA. The anionic formulation of PS 
was not effective against MRSA strain. In general amphiphilic and 
cationic AlPcs possess higher antiviral activity as compared to their 
anionic counterparts against Herpes Simplex Virus type 1 (HSV-
1) [78] and Vesicular Stomatitis Virus (VSV) [79, 80]. Moreover, 
cationic AlPcs selectively eradicate the viruses such as HIV [81] in 
blood concentrates without photohemolysis [82] in the presence 
of red light whereas anionic AlPcS4 proved ineffective against 
Trypanosoma cruzi in plasma and red blood cell concentrates [83]. 

Conclusion
 Despite the synthesis and efficacy of a vast variety of 

photosensitizers, effective for various cell lines, the quest for the third 
generation photosensitizers aimed at targeted PDT remains there. 
In case of phthalocyanines, the role of central metal in determining 



Austin Biomol Open Access 1(2): id1010 (2016)  - Page - 05

Zafar I Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

the photophysical/photochemical properties and therefore 
photocytotoxcity is inevitable. In this review, we described the 
photophysical and photochemical parameters of the AlPc derivatives, 
as well as their in vitro and in vivo cytotoxic activities, diagnostic 
aspects and antimicrobial efficacy. From the data, it can be concluded 
that certain parameters, such as liphophilicity/hydrophilicity, charge 
on the molecule and aggregation in the tissue fluid, determine the 
cellular uptake, localization and photodynamic activity of AlPcs. 
In general lipophilic derivatives proved to be more cytotoxic as 
compared to the hydrophilic ones. Receptor mediated targeting is 
helpful in recognition and enhanced cellular internalization of AlPc 
derivatives although cytotoxicity is not much improved. Any factor 
capable of reducing the aggregation, e.g. the use of polymeric micelles, 
surfactants and substitution of bulky groups on the axial or peripheral 
position of Pc ring also improves the cellular internalization and 
photocytotoxcity. Taking into account the antimicrobial PDT, 
cationic derivatives show promising results against virus, bacteria 
and antibiotic resistant bacteria as well. In addition to the PDT, AlPcs 
possess high fluorescence especially hydrophilic AlPcS4 derivative 
which is least cytotoxic and may be applied in photodiagnosis.
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