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Abstract

Multiple endpoints data are common in practice. There are various statistical 
methods for the analysis of this type of data, however, genetic models for 
familial observations with multiple endpoints data are relatively few, and the 
existing methods are basically variations of the Elston-Stewart algorithm. Here 
we consider several joint statistical models for such data with quantitative 
measurements with a new algorithm, which is computationally more efficient 
than the existing method. The proposed method is detailed in some commonly 
used parametric, semi parametric and nonparametric settings for this type of 
data. For un-genotyped data, the commonly used models are the mixture and 
variance components models. We elaborate how these genetic models can be 
extended for multiple endpoints data with the proposed method

Keywords: Censoring; Endpoints data; Familial structure; Genotype; 
Missing observation

Introduction
Endpoints data are observed responses from patients of some 

pre-specified clinical events of interests, such as death, loss of vision, 
occurrences of certain diseases, or other symptomatic events. In 
medical research, study participants are often followed for a long 
time, during which some participants may drop out early, so that 
random censorship may be present in the data. Such data have 
missing observations, which may be inhomogeneous across the 
patients. For example, in one patient we have observations on the 
lung cancer and kidney disease, and on another we have observations 
on lung cancer, diabetes and asthma. Analyses of such data largely 
fall into two categories: hypothesis testing (usually non‐model based) 
and model inference. Here we concentrate on the model inference of 
such data.

For censored data modeling there are extensive literatures [1‐8], 
just mention a few. For multiple endpoints data analyses, there are 
various statistical methods [9‐13], for example. Wei and Glidden [14] 
provided an overview for some of the methods in this field.

Family genetic data differ from the ordinary data in that they are 
collected in familial units, often with varying structures and sizes, and 
with/without genotyping. These features make the models distinct. 
The key in the modeling is the familial dependence structure and 
the implementation of the genetic mechanism, existing methods 
are basically variations of the Elston-Stewart algorithm, which is a 
multi-level mixture model, and the computation is often challenging. 
Genetic models for multiple endpoints data are relatively limited. 
Here we consider some statistical joint models for such data with 
quantitative measurements with a new algorithm, which is a one-level 
mixture model, thus enhance the computation considerably. The 
parametric method is used when one has some confidence about the 
model specification. The semi parametric method can be used when 
there is not enough information about the full parametric model 
specification. The nonparametric method is used for the robustness 
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of least model assumptions. We elaborate our methods for the 
parametric, semi parametric and nonparametric cases. The methods 
we describe below are valid for arbitrary pedigrees; however, in this 
article we focus on the simpler case of nuclear family for illustration.

In genetic analysis, the data contains genotypes, partially 
genotypes, or no genotypes. However, even if the data are genotyped, 
it is still of interest to know whether there are some other unknown 
gene(s) behind the response functioning. There are reports that 
with added unknown gene locus, the likelihood Akaike information 
reduced (e.g., [15], p.1091, [16], which makes sense, as correct 
parameter(s) added to the model will reduce its AIC), or the 
segregation analysis guided to some other gene(s) which deserve(s) 
further investigation. So even for the genotyped data, a segregation 
model is still of importance. It is also the general model including the 
genotyped data case. In the following we derive some commonly used 
regressive models for this case, including the parametric model, semi‐
parametric proportional hazards model, nonparametric least squares 
model, variance components model and the competing risks model. 
Also, hypothesis testing on parameters of interest can be conducted 
using the likelihood ratio statistics based on the parametric models. 
Our aim here is to present several new parametric, semi parametric 
and nonparametric models for this familial data, and thus we focus 
derivations of the basic forms of these models. Implementations of 
these models and applications to real data will follow in our future 
work.

Methods
Suppose there are d responses observed with some clinical events 

of interests, along with r covariates, for each member in a family. We 
concentrate on nuclear family structure for simplicity. In practice we 
only observe a subset of the responses and covariates for each patient 
in a family. Let yi=(yif,yim,yis)(i=1,…,n) be the vector of responses for 
the i-th nuclear family, with corresponding covariates xi=(xif,xim,xis)
(i=1,…,n). Here yif a dif(<d) dimensional vector of responses of the 
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father in the i-th family, which belongs to a dif dimensional subspace 
of the d‐dimensional space, with a response non‐missing indicator 
vector Iif and covariate non‐missing indicator vector Jif. Similarly, yim 
denotes a vector of responses of the mother in the i-th family and 
yis=(yi1,…,yibi) is for offspring with each of the yij s has the same data 
structure as that for yif. For example, there are three responses to be 
observed, we have the first and third on the father, then Iif=(1,0,1), 
and dif=|Iif|=2 is its dimension or cardinality. If there are total of five 
covariates in the design, and we may only have the first, second, 
fourth covariates for the father, then Jif=(1,1,0,1,0), and rif=|Jif|=3 is 
its dimension. We assume random censorship. Let δif=(δif1,…, δifdif) 
be the censoring indicator of yif, i.e. δifj=1 if yifj is uncensored, and 
δifj=0 otherwise. Similar notations are used for the mother. For the 
off springs, yis = (yi1,...,yki) denote the response vector, with yij be dij 
dimensional observation for the jth sib, with response configuration 
Iij and covariate configuration jif, (j=1,…,ki). Let di=(dif,dim,dis), 
Ii=(Iif,Iim,Iis), Ji=(Jif,Jim,Jis), δi=(δif,δim,δis) and δi=(Cif,Cim,Cis). The 
complete data information consists of Zi=(yi,xi,Ii,Ji,δi), (i=1,…,n). Let 
χ(⋅) be the indicator function, i.e. χ(gir=s)=1 if the genotype of the rth 
individual is s and zero otherwise. Let πs be the population proportion 
of the S-th genotype, t(s|i,k) be the transmission probability of a off 
string’s genotype s given the parents’ genotype (i,k), and θ be the 
collection of all the parameters, including the αs and βs in the mean 
and the parameters in the within and between individual covariance 
matrices and the genotype frequencies πks and transmission 
probabilities t(s|i,k)s. With unobserved genotypes, the computation 
is a serious challenge because of the mixture nature of the model. 
Let f(yr|θ), F(yr|θ), and S(yr|θ)=1-F(yr|θ) be the density function, 
distribution function and survival function of Yr, respectively. They 
may be described by its genotype gr through the mean function 
specification. To simplify model specification, we assume random 
mating so that father and mother can be viewed as independent 
in most cases. The case of non‐random mating or within parent’s 
dependence can be treated similarly with more involved notations.

Note that there is within family dependence but independence 
among different families. We assume the genotypes of each patient 
are unobserved; the case of observed genotypes is automatically 
covered and simpler. Now we describe the methods in some common 
settings below.

Parametric model
Let the genotypes at the locus of interest be coded as 1,…,k. 

We first consider the case of no missing record and censoring. The 
regressive model assumes yir=µ(gir)+∈ir, (i,=1,…,n; r=f,m,1,…,n), 

where µ(gir)=µ0+αχ(gir)+βxir is the mean phenotypic value, 
α=(α1,…,αk)′, χ(gir)=(χ(gir=1),…,χ(gir=k), µ0 is the intercept vector,. 
The residual error term ∈ir is a d dimensional random vector where 
they are independent across i but dependent across r.

In the case of multivariate familial quantitative response data, 
under the commonly used Elston‐Stewart [15] algorithm or its 
variants, the likelihood of the observation yi for the i-th nuclear family 
is
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where typically the density is assumed multivariate normal with 
covariate matrix Σ, f(⋅|θ,k) is the density for residual ∈i with genotype 
gi in the mean vector specification, f(yl|θ,i,j,r) is the density for residual 
∈r with genotype gr and with adjusted mean and variance given by

µ(gil=r)-ΩΣ-1[(yif-µ(gf=k))+(ym-µ(gm=j))] and Σ-ΩΣ-1Ω

where Σ=Cov(Yl,Yl) and Ω= Cov(Yl,Ym); K(θ,I,j) is a quantity that 
depends on the parents’ genotypes and the mean [18]. It is well 
known that when the number of genotypes is relatively large, this 
model is computationally inefficient [19]. Proposed a computational 
more efficient model. In light of [19], let Gf=Gm=(π1,…,πI), then the 
joint likelihood for the i-th family is written as
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In the mean specification f(yl|G,θ,r) is the density of residual ∈l 
with genotype gl=r with adjusted mean and variance given by
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In comparison, model (1) has three layers of mixing (summation) 
corresponding to bik

3 function evaluations that grow exponentially 
with the number of genotypes. On the other hand, model (2) has 
only one layer of mixing in three factors each, or (bi+2)k function 
evaluations that are linearly proportional the number of genotypes. 
The reduction of computation will be more significant for multiple 
loci case.

Here we extend this model in the case of censoring and partial 
observation. In this case, the mean is modeled as

0( ) = ( ( ) ) , 0.6ir ir ir ir irg I g J x cmµ µ αχ β+ + −      (3)

where the operation 0irI µ  means the projection of µ0 onto the 
subspace corresponding to the nonzero elements of Iir, similarly for 

( )ir irI gαχ  and ir irJ x . The corresponding error is now ir irI ε .

Recall that in the case of 1‐dimensional observation without 
genetic implementation, the likelihood for an observation yi with a 
censoring indicator δi is

.)|()|(=)|( 1 i
i

i
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To extend this to our situation, for any dimension indicator Ii, and 
any d‐variable function v(⋅), let ( )iI v ⋅ be the marginal version of v(⋅) 
with respect to the non‐zero entry of Ii and  ( ) = ( ( )).i i i iI v I vδ δ⋅ ⋅    
Let 1-δi be the indicator with the same length of δi but with 0 and 1 
reversed. The full likelihood is
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Here extra caution should be taken since the observation vector 
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from each individual may vary in dimensions and sub‐spaces. For a 
d‐dimensional vector v, let ij ijI vδ   be its margin with respect to 
; and for a d‐dimensional matrix A, ij ij il ilI A Iδ δ  denote the sub‐
matrix by the rows corresponding to the non‐zero entry of δijIij and 
columns corresponding to the non‐zero entry of δilIil. In particular, 

( | , , )ij ij jI f y G rδ θ  has adjusted mean given by
1( = ) ( )( )( ( )),ij ij ij ij ij p ip ip ip ip p ip ip ip ip p pI g r I I I I I yδ µ δ δ δ δ δ µ−′− Ω Σ −     

and adjusted variance matrix given by
1( )( )( ),ij ij ij ij ij ij p ip ip ip ip p ip ip ip ip p ij ijI I I I I I I Iδ δ δ δ δ δ δ δ−′Σ − Ω Σ Ω       

where Iip=(Iif,Iim). The corresponding adjustment in 
(1 ) ( | , , )ij ij jI S y G rδ θ−  is made. The parameter θ is estimated by its 
MLE θ̂  under (3), along with the restriction 1=

1= j
k

j
π∑ .

Semiparametric model
For censored data, a commonly used semi parametric regression 

model is Cox’s proportional hazards model [20,21]. In the univariate 
case, let y(3)<y(4)<…<y(n) be the ordered observations of y1,…,yn 
(assume no ties for simplicity), x(i) and δ(i) be the associated quantities, 
for y(i), of the xi’s and δi’s. Let R(i) be the i-th risk set, the set of all 
individuals who are still under study at the ‘time’ just prior to y(i), U 
be the set of all uncensored individuals, and

),|(1
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xyF
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be the hazard function. The proportional hazards model has a form 
of λ(y/x,θ)=h(β′x)λ0(y)-0.2cm for some known positive function h(⋅), 
and unspecified baseline hazard rate λ0(⋅), which implies that the 
distribution belongs to the Lehmann family [4] 1-F=(1-F0) for some 
F0(⋅) and γ>0. Under these assumptions, the conditional likelihood 
(partial likelihood [20,21]; marginal rank likelihood, [4]) is

,
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where the estimate of θ is the MLE θ̂  under Lc(y|θ). The optimality 
property of θ̂  is studied extensively. In the case of multivariate 
observations, various extensions of this method have focused on 
each marginal distribution and Markov chain Monte Carlo on the 
margins [22]. Proposed a multivariate extension of the proportional 
hazards model, or frailty model, which is equivalent to an exponential 
specification of the joint survival function [23]. Proposed a class of 
multivariate failure time distributions, including a multivariate 
version of Cox’s proportional hazards model, in which the within 
family dependence is modeled by a common latent variable with a 
known parametric distribution given that all the family members 
are independent. Then the joint distribution is obtained by taking 
expectation of the conditional one. All these frailty models assume that 
there is a shared common dependent latent variable. This assumption 
basically requires that the distribution be interchangeable among the 
involved individuals. This is reasonable for some familial data but 
not generally true. Other existing multivariate proportional hazards 
models [24‐26] are similar in nature. Here we model the within family 
dependence in a manifest way to be desirable for our genetic analysis. 
We adopt a successive conditional version of the proportional 
hazards model where we assume a special semi parametric form of the 
survival function in order to evaluate the conditioning in closed form 
easily. More specifically, in our multivariate proportional hazards 

model, we assume h(⋅) and λ0(⋅) are functions of d‐variates each. Let 
yi,(3),…,yi,(ni) be the ordered observations on the i‐th variable (i=1,…,d), 
define xi,(j),δi,(j),Ri,(j), and Ui accordingly. Note there are structures in 
h(⋅) through the dependent effects among the covariates. Recall β′x 
is a d‐vector, let
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where Ω is the within individual covariance matrix. Then h(⋅) behaves 
as a d‐variate normal density, and its marginal and conditional 
versions are well defined and in closed forms, although it is not 
a proper density function. We need the successive ‘conditioning’ 
form of h(⋅) to apply the proportional hazards method. Specifically, 
let wij be the j-th diagonal element of Ω where Ωj be the upper‐
left j‐dimensional sub-matrix of it, aj be the first j elements in the 
j-th column; [β′x]j be the first j components of β′x,hj+1|j(⋅), be the 
conditional version of covariates [β′x]j+1 given [β′x]j. Then hj+1|j(β′x) 
is a univariate normal kernel with mean jjj xa )(1 β ′Ω′− −  and variance 
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Thus, without mixing over gene, for singleton multivariate 
observations, the joint conditional likelihood is
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Now for the case of nuclear family, inspired by (4), we assume 
h(⋅) has the form
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Treat h(⋅) as a ‘density’. Recall µi=(µif,µim,µi1,…,µibi). The 
conditioning [µi]j+1|[µi]j can be applied component-wise, i.e.

[µi]j+1|[µi]j=([µif]j+1|[µif]j, [µim]j+1|[µim]j, [µi1]j+1|[µi1]j,…, [µibi]j+1|[µibi]j)

Now we have
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In (7), [µ(gj,Iir)]1, means the first component of µ(gj,Iir) in Iir, 
and |Iir| denote its cardinality (r=f,m,1,…,bi). Now, the conditional 
likelihood is
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where hj+1|j([µ(i)]j is given by (7). The MLE θ̂  of θ is obtained under 
(8).

Nonparametric model
For univariate censored data, [27,28] considered a class of 

estimators, including the weighted least squares estimators, for 
censored data. Here the weights are determined by the ordered 
statistics of the observations and the associated censoring indicators, 
and are derived from the empirical survival function, i.e., the Kaplan‐
Meier product limit estimator [29‐32]. Formulated the multivariate 
Kaplan‐Meier estimator. Using the product integral, the mathematical 
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expressions are quite involved. So instead of choosing the weights 
according to the multivariate Kaplan‐Meier estimator, we use the 
nonparametric locally weighted least squares method, also called 
locally linear regression smoothers [33,34]. Let Y and X be the d and 
J‐dimensional random vectors corresponding to the full observation 
and the covariates for an individual. Let µ(x)=E(Y|X=x) denote the 
regression function. In the univariate observation case, the locally 
linear estimator )(ˆ xµ of µ(x) is first to find â  and b̂ to minimize

),())(( 2

1= n

i
ii

n

i h
xxKxxbay −

−−−∑
Where K(⋅) is a kernel function, hn is the bandwidth, and 

ax ˆ=)(µ̂ . In our case, keep the notations in section 1. We choose 
the kernel to be the J‐dimensional standard normal density φ(⋅), and 
(⋅) to be its distribution function. To simplify the expression of the 
likelihood, let
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Where Ω is the within individual variance matrix, )~|( px⋅φ and 
)|( px⋅Φ are the adjusted quantities as those in (4). And ir irI IΩ 

is 
the sub‐matrix of Ω with rows and columns corresponding to the 
non‐zero elements of Iim.

We estimate 

We estimate Ω by )ˆ(=ˆ
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where nrs is the total number of individuals with non‐missing (r,s)‐
th components, zrls are the rearrangement of the r‐th component of 

 (t=f,m,1,…) for which the (r,s)‐th components 
are non‐missing.

Let ( )ˆ),,(ˆ πµ xr be the minimize of (9), where the full ),(ˆ xrµ
depends on the genotype r and the point value x. It has the intercept 
term )(ˆ0 xµ (recall (3)), and )(ˆ xµ  is approximated by setting 

)(ˆ=)(ˆ 0 xx µµ . Direct computation of ( )ˆ),,(ˆ πµ xr in (7) is not easy, 
instead we use an iterative procedure as in the following steps.

Select starting values π(0) for π. With this π(0), compute Ω(0), and 
T(0)(r)s. Let  η=(µ0,α,β) be the full representation of the regression 
parameters, Xir(r=f,m,1,…,ni) be the corresponding design matrix 
for the r-th individual in the i-th family. In iterations 1-m do the 
following

(i) Fix π(i) , Ω(i) and T(i)(r) s minimize (7) with respect to η to get
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and update Ω(i+1), and T(i+1(r) with (i+1).For some pre‐specified ∈>0, 
when the relative errors
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we stop the process at the last step m, and take 

)),,((=)ˆ),,(ˆ( )()( mm xrxr πµπµ .

For arbitrary kernel and reasonably chosen band width hn, 
various asymptotic results are established in case of standard non‐
mixture data. We conjecture that similar results will hold under some 
regularity conditions.

Lastly, the bandwidth determines the smoothness of the estimate. 
Interesting research that addresses the crucial problem of bandwidth 
selection can be found in [35]. There are considerable literatures for 
automatic methods that attempt to minimize a lack‐of‐fit criterion 
such as an integrated squared error. But most of the methods 
provide an optimal hn determined by some unknown quantities. For 
simplicity, let k=|Jij| be the dimension of the observed covariate of the 
j-th (j=f,m,1,…,ni) individual in the i-th family, for the corresponding 
kernel, we choose hn=Cn-1/(k+1), for some constant C>0, and C can be 
selected through numerical trial.

Variance components model
As an alternative to the mixture models considered above, the 

Variance Components (VC) model [36,37] has received much 
attention recently due to very efficient in computation as well as 
relatively robustness to model misspecification [38‐46].

Let  be the trait vector of the i-th individual in the family, in 
case without censoring and missing records, the commonly used VC 
model describing the trait value is

yi=µ+gi+Gi+ηxi+ei,

Where µ is the overall mean, gi is the unobserved random vector 
of major gene effects at the trait locus with alleles A and B, Gi is the 
unobserved polygenic effects vector, the ηj’s are effects associated 
with the covariates xij’s, and ei is the residual random error vector. 
The usual assumption is that gi,Gi and ei are uncorrelated and 
E(gi)=E(Gi)=E(ei)=0. When missing records are present, the model is 
modified as

= ( )i i i i i i i iy I g G J x I eµ η+ + + +   .   (12)

In this model, the parameters of interests are specified in the 
family variance matrix, thus computation can be carried out efficiently 
without the multiple mixing. Let yk,πk and Ωk be the observation, its 
mean and variance matrix of the k-th family. We can define Ik, δk and 
Jk accordingly. The commonly used model for quantitative traits is the 
multivariate normal distribution, thus the total likelihood is

=1
( | ) = ( | )(1 ) | ).

K

k k k k k k k k k k
k

L z I y I yθ δ ϕ µ δ µ− Ω − Φ − Ω∑  
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Here φ is the distribution function of the normal distribution 
with mean 0 and variance Ω.

The key lies in the specification of the variance matrices Ωks, 
which we illustrate in the following settings.

In the simplest case of Hardy‐Weinberg equilibrium among locus 
alleles without linkage to marker, and without censoring and missing 
records, the covariance matrix between individuals i and j of a given 
family can be found, for example, in [38]. Modified to our case, it is

2 2 2 2

2 2 2
7

( )   =
( , ) =

2 ( 2 ) ,   
i a d G e j

ki kj
ij i a ij d ij G j

I I if i j
Cov Y Y

I I if i j
σ σ σ σ

σ σ σ
 + + +
 Φ + ∆ + Φ ≠

 

     (13)

where 2
aσ  is the additive genetic variance matrix due to the locus, 

2
dσ is the dominant genetic variance matrix, /4/2= 87 ijijij ∆+∆Φ is the 

kinship coefficient between individuals i and j [47], and  ∆7ij,∆8ij,∆9ij, 
etc. are the condensed kinship coefficient of Jacquard [48], between 
individuals i and j.

In the more general Hardy‐Weinberg disequilibrium case, let f be 
the within population inbreeding coefficient f at the trait locus [49-
51]. Introduced CV model in this case, which modified in our case is

2 2 2 2 2
0

2
7 7 8 8

((1 ) (1 ) ) ,   =
( , | ) = 2

( ( ) ( ) 2 ) ,   

i a d G e j
i j

i ij ij ij G j

fI f f I if i j
Cov Y Y f

I f f I if i j

σ σ σ σ σ

γ γ σ

 + + − + + +

 ∆ + ∆ + Φ ≠

 

 

   
                  (14)

where γl(f)s are matrices determined by 2
aσ , 2

dσ  and f etc., see there 
for details.

In the case of linkage to marker with both Hardy‐Weinberg and 
linkage equilibrium, the covariance in our case can be specified based 
on that of, for example [40], in the same way as above. In the case 
of linkage to marker with either one or both Hardy‐Weinberg and 
linkage disequilibrium, the covariance in our case can be specified 
based on that of [51], in the same way.

Competing risks
Now suppose that the response yi is the failure time and only the 

failure for one of the d diseases is observed for each individual. For 
the i-th family, the data have the form (yi,δi,ji,xi), where yi=(yif,yim,yi1,…
,yibi), similarly for δi,ji, and xi, where ji is the observed disease type 
indicator. For example if the observed disease for the father is type 
2, then jif=2. Given the data (yi,δi,ji,xi)s, we like to investigate the 
objective of interests for each of the d disease. This problem is that 
of the competing risks. Note here the response for each individual 
is one‐dimensional, and hence the corresponding quantities have 
simple notations. We are interested in the genetic regression analysis 
for the competing risks. We use a variant of the proportional hazards 
model. The mean of the j-th type, r-th member of the i-th family is 
specified as

0( ) = ( ( ) ) ,    ( = , ,1,..., ).j ir ir j j ir i ir ir ig I g J x r f m bµ µ α χ β+ + 

For a reasonably chosen function h(⋅), we specify

))).(()(()))(()))((((=)(
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slj
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lmjl
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l
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i ghsTghghh µµπµπµ ∑∏∑∑

More convenient below is to use the notations

),=(    )),((=)(
1=

mfrghh lrjl

k

l
ir µπµ ∑

and
).1,...,=(    ),|)(()(=)(

1=
ipsrj

k

s
ir bryghsTh µµ ∑

Let yj1<…<yjkj be the kj failures of type j(j=1,…,d), R(yji),be the risk 
set at yji, the partial likelihood is

.(15)
)(

)(
=)|(
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1=1= jlr

jiyRl
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d

j h

h
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µ

µ
θ
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∈

Asymptotic heuristic
For IID data, various asymptotic results can be obtained. The 

results from the score function, the likelihood ratio statistic, and the 
MLE are equivalent. These results can be used to establish confidence 
intervals or hypothesis testing, etc. for θ. Here we are more interested in 
using the MLE. For general dependence model, usually the treatment 
is non‐standard. But for our model, since the log‐likelihood is in the 
form of several additive pieces, standard method can be used to derive 
the asymptotic distribution of the MLE. Let zi=(yi,δi)(i=1,…,n). For 
the IID data, it is well known that under mild regularity conditions, 
the MLE nθ̂ is strongly consistent and asymptotically distributed 
normal with mean at the true parameter value θ0, and variance matrix 
given by the inverse of the Fisher information. Here the observations 
are unbalanced, the asymptotic variance is the Fisher information 
times a weight matrix. To derive it, we need some notations, and 
mainly concentrate on model (4).

Let Nip be the total number of parents with the i-th measurement 
non‐missing (i=1,…,d), Niss be those for the siblings, N be the total 
number of individuals in the study, γNir=Nir/N(r=p,s). Assume 
limN→∞γNir=γir>0 exists (r=p,s;i=1,…,d). Let Yp and Yj be general random 
vectors associated with a parent and sib respectively, and ∆p and ∆j be 
the corresponding random vectors.

For model (4), let

=1 =1
( | , ) = log( ( | , )) (1 ) log( | , ))

k k

p j p l p p l p
l l

H Y Y f Y l SY lθ π θ π θ∆ + −∆∑ ∑ 

=1 =1
log( ( ) ( | , , )) (1 ) log( ( ) ( | , , ))

k k

j j j j
l l

T l f Y G l T l S Y G lθ θ+∆ + −∆∑ ∑      
      (16)

here we use the notation ∆p v(⋅) to represent the marginal version 
of v(⋅) corresponding to the non‐zero components of ∆p. The Fisher 
information matrix is

).(17)
),|(

(=)(
2

θθ
θ

θ
∂′∂

∂
− jp YYH

EI

The above expectation is more involved than it looks, since 
that involves summations of all possible combinations of non‐zero 
elements of it with respect to ∆r, and also the unknown distribution of 
it. Instead, an empirical version of it has a known form

(18),|)|(log1=)( ˆ=

2

n
N

yL
N

I
θθθθ

θθ
∂′∂

∂
−

where L(y\θ) is given by (4). At the true data generating parameter 
θ0, IN is strongly consistent for I(⋅). To obtain the weight matrix, we 
need to specify the parameter order in θ. We arrange the first k-1 
entry to be π1,…,πk-1, next we arrange all the regression parameters 
for the first response variable,..., all the regression parameters for the 
last response variable, then all the independent parameters in the 
variance matrix Σ and covariance matrix Ω in the similar order. It 
is clear that, in the weight matrix W, for (i,j) corresponding to the 
first k-1 components in θ, the weight should be γp=γ1p+…+γdp; for 
(i,j) corresponding to the r-th and the l-th regression parameters, 
the weight is ; for (i,j) corresponding to 
the (a,b)-th and the (u,v)-th variance or covariance, the weight is 
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[(γap+γas) (γbp+γbs) (γup+γus) (γvp+γvs)]
1/4. Let θ0 be the true unknown 

data generating parameter, d
→  stands for convergence in distribution. 

Then, we have
1

0 0
ˆ( ) (0, ( ) )

d

NN N I Wθ θ θ−− → ⊗  (19)

where A⊗B stands for the Kronecker product of matrices A and B. 
Since I(⋅) involves unknown quantities, equivalently

1
0

ˆ ˆ( ) (0, ( ) )N N n NN N I Wθ θ θ−− ⊗:  (20)

where WN is W with the γs replaced by the γNs.

The above ideal applies to the other models in this paper, but the 
results will be more involved, and we only discuss them briefly.

For the proportional hazards model, even for the IID data case, the 
conditional likelihood looks much different from the full likelihood. 
Interestingly, the MLE from this model (under the assumption of 
correct model specification and some regularity conditions) has the 
same asymptotic distribution as that from the full likelihood [21,52]. 
For the proportional hazards model, it is noted [4] that the survival 
function can be written as

S(y\x,β)=-S0(y)h(β′x),

and f(y\x,β)=-dS(y\x,β)/dy. So to get the full log‐likelihood (14), 
we need the estimate of S0(y) for the d‐dimensional case [29,30]. 
Proposed the multi‐dimensional generalization of the Kaplan‐Meyer 
nonparametric estimator of S(y), similar technique can be used here 
for the construction of S0(y). Then (18) continues to hold in this case. 
Due to technical involvement, we will not pursue the details here.

For the least squares estimator, since the weight involves the 
kernel and hn, the treatment is different from those above, and in the 
case of full observation generally the asymptotic result is of the form

),(0,))(ˆ( 22
0 Ω→−−− NhoChnh

d

npnn
d
n θθ

for some constant C and matrix Ω determined by the kernel and 
the true (unknown) data and censoring distributions [53,54]. In our 
case of partial observation, the above result holds with Ω replaced by 
Ω⊗W.

For the competing risks model, the structure is similar to that of 
the proportional hazards model. Here the response is one dimensional 
so that the survival function can be estimated by the Kaplan‐Meyer 
estimator and the weight matrix W is the identity.

Discussion
We have considered several statistical methods, parametric, semi 

parametric and nonparametric models, for the genetic regression 
analysis of familial multiple endpoints data, with possible missing 
records. Here we only considered the case of nuclear families and the 
parameters are independent of time. The cases of arbitrary pedigrees 
and/or the time dependent parameter can be treated similarly. The 
variance components method can also be applied to the proportional 
hazards model and in the analysis of competing risks. There are some 
marginal models for the multiple endpoints data, which work well 
in practice. But we think the joint model is more appropriate when 
the within responses structure is important in the analysis. Another 
commonly used method to deal with the missing data is the EM 
algorithm [55], which can be implemented into the models considered 

here. But for the multiple endpoints data, the proportion of missing 
part is usually large; the EM algorithm may not be efficient. When the 
missing pattern is non-ignorable, more complicated approaches need 
to be considered to reduce potential biases. Hypothesis testing for 
parameters of interests can be conducted using the likelihood ratio 
statistics based on the parametric models. We only derived the basic 
forms of these models; more features can be implemented to them in 
particular applications.
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