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Abstract

The current advances in technology and disease surveillance systems 
have often made available the spatial/geographical orientation of disease 
occurrences. Statistical analysis of such data is often complicated by the 
spatial structure of the data which manifest itself as spatial autocorrelation. 
Methods to account for spatial autocorrelation rarely found in the mainstream 
classical statistics literature. However, current practices in spatial epidemiology 
seek to unveil and understand the spatial distribution of diseases. Therefore 
any determination to model spatial autocorrelation is a non-trivial effort which 
complements the classical statistics approaches. The objective of this review is 
to discuss the current statistical methods in spatial epidemiology as well as their 
relative weaknesses. Much attention and focus is provided for methods which 
are relatively advantageous and widely used.
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CAR; GIS methods

Introduction
Spatial epidemiology is the study of the spatial/geographical 

distribution of disease incidences and its relationship to potential 
risk factors. Knowledge of the spatial variations of diseases 
and characterization of its spatial structure is essential for the 
epidemiologist to better understand the population’s interaction with 
its environment. The origin of spatial epidemiology dates back to 
1855 with the classic epidemiologic studies of John Snow on cholera 
transmission. Snow’s study of London’s cholera epidemic provides 
one of the most famous examples of spatial epidemiology. Mapping 
the locations of cholera victims, Snow was able to trace the cause of 
the disease to a contaminated water source. Spatial analysis in the 
nineteenth and twentieth century mostly took the form of plotting the 
observed disease cases or rates [1]. Advances in technology now allow 
not only disease mapping but also the application of spatial statistical 
methods, such as cluster analysis [2,3] and ecological analysis [4-6] 
in epidemiological research. Geographic Information System (GIS) 
methods and modern statistical methods allow an integrated approach 
to address both tasks; i.e. inference on the geographical distribution 
of the disease and its prediction at new locations. Many diseases are 
influenced by environmental variables, and since these variables are 
spatially continuous in natures, the disease rates tend to exhibit spatial 
dependency, popularly known as spatial autocorrelation. Thus such 
patterns of spatial autocorrelation confirm the natural law of nature, 
popularized by Tobler [7] as the first law of geography: “Everything 
is related to everything else, but near things are more related than 
distant things”. The use of standard/classical statistical techniques for 
modeling spatially distributed diseases either leads to over estimation 
or under estimation of parameters in question. The objective of this 
manuscript is to provide a review of the current statistical methods 
that are useful in analyzing and modeling spatially distributed 
diseases, their relative weaknesses and strength. Much attention and 
focus is provided for methods which are relatively advantageous and 
widely used. 
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Cluster Analysis
Fundamental to the spatial epidemiologist is the investigation of 

possible disease clustering. Cluster analysis provides opportunities 
for the epidemiologist to understand the spatial distribution of 
diseases and the possible association between demographic and 
environmental exposures [8-11]. Searching for disease clustering 
involves an assessment of local or global accumulation of the disease 
incidences [12,13]. The focus of global cluster analysis is to determine 
the presence or absence of clustering in the whole study region. There 
are numerous methods for testing global clustering, including those 
proposed by Alt and Vach [14], Besag and Newell [8], Cuzick and 
Edwards [15], Diggle and Chetwynd [16], Grimson [17], Moran 
[18], Tango [19-21], Walter [22-24] and Whittemore et al. [25]. The 
most widely used measure of global clustering in epidemiology is 
the method proposed by Moran [18]. Moran’s Index is a weighted 
correlation coefficient that is used to measure deviation from spatial 
randomness. The Index MI statistic is similar to the Pearson correlation 
coefficient [18,26,27] with the form:
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where N is the number of spatial objects, wij is the element in the 
spatial weights matrix corresponding to the spatial object pairs i, j; 
and ri and rj are the observed rates for objects i and j with mean rate 
r. When the weights are not row-standardized, the scaling factor N/
So is applied, such that So = Σi Σj wij. Values range from −1 (indicating 
perfect dispersion) to +1 (perfect clustering or deviation from 
randomness). Negative (positive) values indicate negative (positive) 
spatial autocorrelation.

Deviation from spatial randomness indicates specific spatial 
arrangements of geographic location information such as clusters 
[18]. Although Moran’s Index was originally developed to analyze 
continuous data, its application to analyze count data of health events 
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is enormous [28-31]. Other health applications of Moran’s Index 
include studies of Kitron and Kazmierczak [32] of Lyme disease in 
the Wisconsin state, studies of Glick of cancer in Pennsylvania, the 
geographical distribution of human giardiasis in Ontario, Canada 
[33], Lyme disease in the New York state [28], and the geographical 
patterns of cholera in Mexico [34]. 

Global cluster analysis can obscure local effects since the 
assumption of stationary is rarely met. Local cluster analysis defines 
the characteristics of the clusters, such as size, location and intensity. 
Several formal methods and techniques for identifying local disease 
clusters have been developed for both point and areal level data [8,9]. 
Examples of local clustering methods include spatial correlograms 
[35-39] the Local Indicator of Spatial Association [40], the local 
Gi* statistics [41], Ripley’s K-function [42-44], Cluster Evaluation 
Permutation Procedure (CEPP) [45], the Knox test [46,47], and 
Kulldorff’s spatial scan statistic [2]. Other methods for space-time 
clustering include Mantel’s test [48], Ederer-Meyer-Mantel test [49], 
Barton’s test [50], Diggle et al. test [51], Jacquez’s k nearest neighbors 
test, and Kulldorff’s space-time scan statistic [2]. 

The spatial scan statistic developed by Kulldorff [10,11,52] 
offers several advantages over the others: (1) it corrects for multiple 
comparisons, (2) it adjusts for the heterogeneous population densities 
among the different areas in the study, (3) it detects and identifies 
the location of the clusters without prior specification of their 
suspected location or size thereby overcoming pre-selection bias, 
(4) and allows adjustment for covariates. Also Kulldorff’s spatial 
scan statistic is both deterministic (i.e., it identifies the locations of 
clustering) and inferential (i.e., it allows for hypothesis testing and 
evaluation of significance). The spatial scan statistic has been used to 
detect and evaluate various disease clusters including leukemia [9,53], 
cancer [10,45,53-56], giardiasis [57], tuberculosis [58], diabetes [59], 
Creutzfeldt-Jacob disease [60], granulocytic ehrlichiosis [61], and 
amyotrophic lateral sclerosis [62].

The flexible spatial scan statistic is a recent cluster detection 
methodology developed by Takahashi and Tango. This approach is 
based on the original idea of Kulldorff. Unlike Kulldorff’s approach, 
however, which imposes a circular window to define the potential 
cluster areas [9], Takahashi and Tango’s flexible spatial scan statistic 
imposes an irregularly shaped window on each region connecting its 
adjacent regions. 

For any given location i, a set of irregularly shaped windows 
consisting of k connected locations including i moves from 1 to 
a pre-set maximum window size K (which is proportional to the 
population at risk). To avoid detecting a cluster of an unlikely 
peculiar shape, the connected locations are restricted as the subsets 
of the set of location i and (K - 1)-nearest neighbors to location i. 
In effect a very large number of different but overlapping arbitrarily 
shaped windows are created. For location i, the flexible scan statistic 
considers K concentric circles plus all the sets of connected locations, 
including location i, whose centroids are located within the Kth largest 
concentric circle. Let Wik(j), j=1,…, jik denote the jth window which is a 
set of k regions connected starting from the region i, where jik is the 
number of j satisfying Wij(k)⊆wik for k = 1,…,K. Then, all the windows 
to be scanned are included in the set:

   W = {wik(j)\1≤i≤m, 1≤k≤K, 1≤j≤jik}.      (2)

Under the alternate hypothesis, there is at least one window W for 
which the underlying risk is higher inside the window when compared 
with outside. For each window the likelihood of the observed number 
of occurrences within and outside the window under the Poisson 
assumption is computed as:
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Where W̑ indicates all the regions outside the window W, and O ( 
) and E ( ) denote the observed and expected number of occurrences 
within the specified window, respectively. The indicator function I ( ) 
is 1 when the number of occurrences within the window is more than 
the expected number and 0 otherwise. The window W* that attains 
the maximum likelihood is defined as the Most Likely Cluster (MLC). 
This approach is able to detect arbitrarily shaped clusters, and this 
statistic is well suited for detecting and monitoring disease outbreaks 
in irregularly shaped areas. 

Popular software packages for conducting cluster analysis includes 
Sat Scan for circular spatial scan statistics developed by Martin 
Kulldorff [11] and FleX Scan developed by Tango and Takahashi 
[63] for flexible shaped scan statistics. Sat Scan can implement both 
purely spatial and space-time cluster analysis; however, these are not 
yet implemented in FleX Scan. The scan statistics technique has also 
been implemented the SpatialEpi [64] package of the R software for 
statistical computing. 

Ecological Analysis
A significant interest in spatial epidemiology lies in identifying 

associated risk factors which enhance the risk of infection, the so 
called ecological analysis [65,66] or geographic correlations studies 
[67]. The term ecological analysis is used loosely here to denote 
associating aggregated disease outcomes with related risk factors or 
covariates, where inference still remains at the aggregated level. 

Classical linear methods
The most prominent method is the classical linear regression 

model, where the response variable y is assumed to be independent 
normal or Gaussian distributed and covariates, say x1,…,xp act linearly 
on the response. By assumption, the conditional expectation of y is: 

 η = E(y\x1,…,xp) = β0+x1β1+…+xpβp,η ,    (4)

where the regression coefficients β1,…,βp determine the strength 
of the influences of the covariates, and the linear predictor η is the 
sum of the covariate effects. Here, each observation has an underlying 
mean of Σi χi βi and normally distributed random error term ε. 
Generally, the random error term ε = (ε1,…,εp) has zero mean and 
uncorrelated variance-covariance matrix Σσ, i.e. εi ~ N(0,Σσ), where 
Σσ=Var(y)=Var(ε) = σ2I, and I is p×p identity matrix. The assumption 
of independent observations also implies that E (εiεj) = E (εi) E (εj) = 0.

For disease counts of small areas with relatively small populations 
at risk and few observed cases, rates may not follow the assumptions 
of the linear model. In such cases, a direct connection between the 
expectation of y and the linear predictor η is not possible. Generalized 
Linear Models (GLMs) extend the classical linear model for Gaussian 
responses to more general situations such as binary or count data [68-
71] to ensure the appropriate domain of E(y/x1,…,xp). By introducing 
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a more general transformation or response function h, equation (1.1) 
can be rewritten as:

 h(η) = E(y\x1,…,xp) = h(β0+ β1x1+…+xpβp).  (5)  

Both the classical linear model and GLMs provide the means to 
quantify and describe only first-order effects or large-scale variation in 
the mean of the disease outcome. These methods ignore second-order 
spatial effects or small-scale variations that arise from interactions 
between neighbors, i.e. spatial autocorrelation. Both methods assume 
that any spatial pattern observed in the outcome y is entirely due to 
the spatial patterns in the covariates; therefore, no residual spatial 
variation is accounted for. If an important covariate is inadvertently 
omitted, however, estimates of β will be biased [72], and if this 
covariate varies spatially, residual spatial variation will often manifest 
itself as spatial autocorrelation in the residual process. Hence when 
these methods are used to analyze spatially correlated data, the 
standard error of the covariate parameters would be underestimated 
and thus the statistical significance would be overestimated [73]. 

Spatial methods
Spatial statistical methods, such as spatial regression, incorporate 

spatial autocorrelation according to the way spatial neighbors are 
defined. A spatial regression model may be parameterized as equation 
(4). A modification of the variance-covariance matrix Σ is then 
required to allow spatially correlated error terms. Common methods 
to incorporate spatially correlated error terms in the variance-
covariance matrix Σσ is the Simultaneous spatial Autoregressive 
(SAR), Conditional spatial Autoregressive models (CAR), and Spatial 
Moving Average models (SMA). Both the SAR and CAR correspond 
to autoregressive procedures in time series analysis [43]. These 
models are well explained in Cliff and Ord [26], Haining [74], Ripley 
[43], and Cressie [73]. 

Under CAR model specification, the conditional expectation of 
the response variable y is specified as 

 η = E(y\x1,…,xp) = β0+x1β1+…+xpβp+ρw[y-(β0+x1β1+…xpβ)]+ε,     (6)

which can be surmised as 

 η = E(y\x1,…,xp) = ∑xβ+ρw(y-∑xβ)+ε ,            (7)

and simplified in matrix notation as Y = Xβ +ρW(Y-Xβ)+ε. 
The error terms assumed normally distributed with zero mean and 
variance-covariance matrix Σσ, i.e. ε ~ N (0,Σσ) expressed in terms 
of the spatial connectivity/structure of the data. Thus, Σσ= σ2 (I-ρW), 
where W = wij is a spatial weight matrix that describes the spatial 
connectivity/dependency between the locations i and j. several 
specifications of elements in wij may be constructed including:

1
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CAR models restrict the spatial weight matrix to be symmetrical 
and therefore not suitable for modeling directional processes. Also, 
the k nearest neighbor connectivity option for wij generates as 
asymmetric neighborhood structure and therefore not suitable for 
CAR models. 

SAR model on the other hand can be specified under three 

different variants. As spatial lagged model, as spatial error model oras 
spatial lagged mixed-model. Unlike CAR models, the neighborhood 
connectivity matrix W in the SAR model need not be symmetrical. 

For a spatial lagged model, spatial autocorrelation is included 
as an additional predictor in the form of spatially lagged dependent 
variable. Thus Y = ρY*+Xβ+ε, where the lagged dependent variable is 
Y* = WY, which finally yields

Y =(1- ρY)-1Xβ+(1- ρY)-1 ε.   (8)

Where it is believed that the autoregressive process occur only 
in the error terms rather than either the in the response or in the 
predictor, the OLS model Y = Xβ+ε is complemented by a spatially 
lagged error term of the form ε=λWε+έ. This yield

Y = λWε+Xβ+έ,     (9)

Where έ ~ N (0,σIn) λ and is the lagged-error variable. 

Where it is believed that spatial autocorrelation affects both the 
response and predictor variables, then another term WXγ which 
expresses a lagged-decency of the predictor variables is added to the 
model. This results in a spatial lagged mixed model of the form:

Y = λWε+Xβ+WXγ+ε,     (10)

Where γ expresses the regression coefficient of the lagged-
response variable. 

Haining [74] expresses the facts that ever SAR model is also a 
CAR model with K = S+ST-STS, where K is the ρW of the CAR model 
and S is the ρW of the SAR model.

Numerous software packages have been developed for 
implementing spatial regression models. Typical amongst them is the 
free software GeoDa [75] which easily fits both spatial lag and error 
models. The sped package in R software has vigorous functions for 
fitting spatial regression models. The comprehensive econometric 
toolbox developed by LeSage and Pace [76] in MATLAB has 
numerous functions for fitting spatial regression models. 

Generalized structured additive regression 
Generalized Additive Models (GAM) also provides a powerful 

class of models for modeling nonlinear effects of continuous 
covariates in regression models with non-Gaussian responses. 
Modeling the nonlinear effects of continuous covariates may be based 
on smoothing splines [77], local polynomials [78], regression splines 
with adaptive knot selection [79-81] and P-splines [82,83]. 

Fahrmeir et al. [84], Brezger [85] and Kneib [86] present a 
detailed description of Bayesian P-Splines and mixed model based 
inference in generalized Structured Additive Regression (STAR) 
based on Bayesian P-Splines. Generalized STAR models are 
extensions of GAM models which allow one to incorporate small area 
spatial effects, nonlinear effects of risk factors, and the usual linear or 
fixed effects in a joint model. Typically, a generalized STAR model is 
parameterized as:

 η = f1(xi1)+∙∙∙+fp(xip)+ f spat(si)+ u’iγ ,     (11)

Where f1,…,fp are nonlinear functions of the covariates x1,…,xp. 
In such models, covariates of the parametric or fixed effects are 
subsumed in the term u'iγ, where γ is an estimate of the fixed effect 
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covariate ui. The linear combination u'iγ corresponds to the usual 
parametric part of the predictor. The function fspat (Si) accounts for 
spatial effects of the data.

Bayesian Estimation 
STAR models are highly parameterized; therefore, inference is 

based on a fully Bayesian estimation of the posterior distribution of 
the model parameters rather than maximum likelihood estimation 
methods. Since the posterior is analytically intractable, the parameter 
estimates are generated by drawing random samples from the 
posterior via MCMC simulation techniques. 

Bayesian estimation and inference in statistical modeling provides 
a number of advantages over the classical approaches. This includes 
a more natural interpretation of parameter intervals, and the ease 
with which the true parameter density may be obtained. Bayesian 
approach has recently been given intense focus due to the widespread 
adoption of Markov Chain Monte Carlo (MCMC) methods. In the 
past, Bayesian estimation and inference was often daunting due to 
the requirement of numerical integration. The MCMC estimation 
method decomposes complicated estimation problems into simpler 
problems that rely on conditional distributions for each parameter in 
the model [87]. In classical approaches such as maximum likelihood 
estimation, inference is based on the likelihood of the data alone. In 
Bayesian approach, the likelihood of the observed data y given a d 
dimensional parameter set θ = (1,…, θd), denoted as p(y/θ), is used to 
modify the prior beliefs p(θ) with the updated knowledge summarized 
in a posterior density p(y/θ). Applying Bayes theorem, p(θ/y)= p(y/θ) 
p(θ) p(y) is found, where the marginal likelihood p(y) is obtained by 
integrating the likelihood over the prior densities, i.e. p(y)=∫p(y/θ)
p(θ)d(). Since p(y) can be regarded as a normalizing constant, the 
posterior density can be simplified as p(θ/y)α p(y/θ) p(θ).

Priors for unknown functions and fixed effects 
The unknown functions f1,…,fp, fspat (S) and the fixed effects γ 

are considered as random variables and must be supplemented by 
appropriate prior assumptions. In the absence of any prior knowledge, 
diffuse prior p(γ) αconst (may be assigned for the fixed effects. 
Alternatively, a weak informative multivariate Gaussian distribution 
may be assigned. For modeling the unknown functions f1,…,fp, there 
exists a variety of different approaches. Polynomials of degree l are 
often not flexible enough for small l, yet estimates become more 
flexible but also rather unstable for large l, especially at the boundaries 
[85]. Eilers and Marx [82] suggest specific forms of polynomial 
regression splines which are parameterized in terms of B-spline basis 
functions together with a penalization of adjacent parameters, also 
known as P-splines. For instance, following Eilers and Marx [82], f(x) 
can be approximated by a polynomial spline of degree l with equally 
spaced knots min max

,0 ,1 , 1 ,j j j j s j s jx xζ ζ ζ ζ−= < < < < =  within 
the domain of xj. The assumption that f(x) can be approximated by 
a polynomial spline leads to a representation in terms of a linear 
combination of d=s+l basic functions Bm, i.e. ( ) ( ),

1

d

j j j m m j
m

f x B xξ
=

=∑ . Thus, 
the estimation of f(x) is reduced to the estimation of the vector of 
unknown regression coefficients ( )1,..., mξ ξ ξ ′= from the data. Detailed 
description of Bayesian P-Splines in STAR models can be found in 
Brezger [85]. 

Priors for spatial effects
The spatial effect is commonly introduced in a hierarchical fashion 

via prior distributions of location-specific random effects. Unlike 
the SAR, CAR, or SMA models, spatial dependencies are estimated 
for each spatial unit. A major significance of STAR modeling 
approach is that the spatial effect can be split into spatially structured 
(correlated) and a spatially unstructured (uncorrelated) effects. Thus, 
f spat(s) = fstr(s)+funstr(s) where the function fstr(s) accounts for spatially 
correlated effects of the data, whereas the function funstr(s) accounts 
for unobserved heterogeneity, occurring locally or at a large scale. The 
most common prior for modeling the structured spatial effects fstr(s) is 
the Markov random field prior pioneered by Besag [88,89]:
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Here s ε {1,…,S} represents the locations of connected geographical 
regions, Ns is the number of geographical neighbors and s’ ~ s denotes 
that geographical locations s’ and s are neighbors. The uncorrelated 
funstr(s) part may be estimated based on location-specific Gaussian 
random effects p(funstr(s)\𝜏2

unstr)~N(0,𝜏2
unstr). In a fully Bayesian 

estimation, hyper-priors for the variance parametersτ2
j, j=1,…,p, τ2

str 
and 𝜏2

unstr are also considered as unknown; therefore, appropriate 
hyper-parameters have to be assigned. Commonly, highly dispersed, 
but proper, inverse Gamma distributions p(τ2

j)~IG(aj,bj) with known 
hyper-parameters aj and bj with density function p(τ2

j) α (τ2
j)

-aj-1exp(-
bj/ τ2

j)  are assigned in the second stage of the hierarchy. 

Different forms of STAR models may be structured for both 
cross-sectional and longitudinal data. Well known models that can 
be structured include GAM, Generalized Additive Mixed Models 
(GAMM), spatial regression models, generalized geoadditive mixed 
models (GGAMM), dynamic models, varying coefficient models, 
and geographically weighted regression [90] may be useful within a 
unifying framework. Detailed description of these models and their 
applications can be found in Fahrmeir and Lang [91,92], Lang and 
Brezger [93], Brezger and Lang [94], Eilers and Marx [82], Marx and 
Eilers [83], Wahba [95], and Hastie and Tibshirani [77]. 

Much literature has been developed around methodological issues 
relating to the Bayesian approach [96-103]. Bayesian approaches to 
GAM are currently either based on regression splines with adaptive 
knot selection [104-110], or on smoothness priors [77,91,92]. The 
development and implementation of Markov Chain Monte Carlo 
(MCMC) methods in software such as WinBUGS [111] and BayesX 
[112] have made Bayesian estimation approaches simpler.

Conclusion
Space has become, and would continue to be, an essential 

dimension in epidemiology. This is mainly due to the availability and 
quality of geographically referenced health data. Thus the relevance of 
space is unlimited, both in theory and in practice. However, statistical 
methods for spatial epidemiologic data are limited in the mainstream 
statistics literature. Many texts in the field of spatial statistics and 
related fields address the significance of space and theoretical 
approaches in diverse forms. This manuscript has discussed a wide 
range of statistical methods useful in spatial epidemiology; focusing 
on those relevant under two main themes; cluster analysis and 
ecological analysis. The availability of open source software packages 
designed to facilitate such methods and techniques has been key and 
resourceful in their implementation. However, their implantations 
must be guided by good practice theories within the epidemiologic 
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principles. With these, spatial epidemiologic studies will continue to 
play a critical key role in the understanding of disease epidemiology, 
especially the complex relationship between population, health and 
environment.
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