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Abstract

Fractal Image Compression (FIC) is one of the effective techniques for 
compression of natural and still images. In FIC method an image is partitioned 
into non-overlapping-range blocks and overlapping domain blocks. All the 
domain blocks are collectively called as domain pool. Size of the domain pool 
determines the complexity of the encoding phase. Each range block is encoded 
based on an affine similarity between the domain blocks. However FIC brings 
advantages of high compression ratio while preserving the resolution in the 
decompressed image, it lacks from its expensive computational cost due to 
the large searching space in the domain pool. In the previous method, block 
classification method was used to classify the domain pool and preset block 
is used to select the appropriate domain block. Since the domain pool was not 
accurately classified, certain complexity occurs in this method. To overcome this 
limitation we utilize two methods to reduce the computational complexity of the 
FIC. Initially the domain pool is classified into three classes based on Fisher’s 
classification technique and then a Fast Fractal Image Compression (FFIC) is 
implemented to reduce the searching space in the classified domain pool.

Keywords: Fractal Image Compression (FIC); Range blocks; Domain 
blocks; Fisher’s classification scheme; Fast Fractal Image Compression (FFIC)

specifically to discard information that the human eye cannot easily 
see. In DCT, an image is partitioned into blocks containing different 
frequencies where less important frequencies are discarded through 
quantization and more important frequencies are used to retrieve the 
image during the decompression process. The main advantage of DCT 
is minimization of blocking artefact. Wavelet based coding provides 
satisfactory image quality with a high compression ratio mainly 
due to a better energy compaction property of wavelet transforms. 
However, selecting a particular wavelet for a specific application is 
very tedious process [3].

Fractal Image Compression (FIC) is one of the lossy compression 
techniques. This technique provides high compression ratio and 
high quality reconstructed image with the advantage of very fast 
decompression process. Multiresolution property is another 
advantage of FIC. Hence, an image can be decoded at different 
resolutions. But, the long computation time in searching the domain 
pool during encoding step still remains the main drawback of FIC 
[4,5]. Several methods have been proposed to overcome this problem. 
The block classification scheme is the most common approach for 
reducing the computational complexity in fractal compression 
methods [6,7]. In such classification scheme, domain blocks are 
grouped. Another effective method is Fisher’s classification that we 
use it in this study along with FFIC.

Methodology
In Fractal Image Compression (FIC) scheme, the input image 

is partitioned into two types of blocks: Range blocks, and Domain 
blocks. Range blocks are non-overlapping blocks of size n×n, that the 
input image is partitioned into [8]. The pool consisting of these blocks 
is called range pool. The range blocks in the range pool are the blocks 
to be encoded. Domain block, on the other hand, are overlapping 
blocks of size 2n × 2n that the input image is partitioned into. The 

Introduction
With the increasing demand for delivering still images, video 

sequences and animations, data compression remains an essential 
tool to reduce the cost of data transmission and storage times. 
Demands for the communication of multimedia data through the 
telecommunication network and accessing the multimedia data 
through the internet is growing explosively. The basic objective 
of image compression is to find an image representation in which 
the pixels are less correlated. The two fundamental principles used 
in an image compression method are redundancy and irrelevancy. 
Redundancy removes less useful information from the signal source 
and irrelevancy omits pixel values which are not noticeable by human 
eye.

The image compression techniques are mainly classified into 
two categories; Lossless techniques and Lossy techniques. In 
lossless compression techniques, the reconstructed image after the 
compression is numerically identical to the original image. Lossless 
compression can only achieve a modest amount of compression, 
and is preferred for archival purposes and often medical imaging, 
technical drawings, clip art or comics. Lossy methods are however 
especially suitable for natural images such as photos in applications 
where minor loss of fidelity is acceptable to achieve a substantial 
reduction in storage size. An image reconstructed from the lossy 
compression contains degradation relative to the original image.

However, lossy schemes are capable of achieving a high 
compression ratio, they produce imperceptible differences that can 
be called visually lossless [1]. Applications of these compression 
techniques include Joint Photographic Experts Group (JPEG), 
Discrete Cosine Transform (DCT) and Wavelet Transform (WT). 
JPEG is primarily a lossy compression method [2] and it is capable 
of producing high-quality compressed images. JPEG was designed 
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pool consisting of these blocks is called domain pool. The blocks in 
the domain pool are contracted to the same size as the range blocks. 
In FIC, the domain pool is considered as a virtual codebook. The 
size of the domain pool is directly proportional to the complexity of 
encoding process because the larger the domain pool, the longer the 
search time [9,10].

In the encoding phase of the fractal compression, each range 
block is encoded by finding the best matched domain block within 
the domain pool. An image with the size of N × N is partitioned into 
a non-overlapping range blocks Ri, {R1, R2,..Rp} of a predefined size, 
n×n. Then, a search codebook called domain pool Ω is created from 
the image by taking all the domain blocks Dj, {D1, D2,..Dq} of size 2n 
× 2n. The range-domain matching process is begun which consists 
of a shrinking of a domain block by averaging its pixel intensities, 
forming a block of size n×n. For a given range block Ri, the encoder 
must search the domain pool Ω for the best matched domain block 
(see the equation (1)) [13].

R = s.D + o.1  (1)

Where s is a scale factor and o is an offset. Both s and o are scalar 
variables. Of note that, the encoding time can be reduced by reducing 
the size of the domain pool [14].

 Because of all comparisons between range and domain blocks, 
the matching process is responsible for the exhaustive search time. In 
order to shorten the search time, two solutions could be envisaged. 
Firstly Fisher’s block classification scheme is applied to classify blocks 
into a number of classes according to their common characteristics. 
Fisher scheme is an efficient classification technique proposed by 
Fisher [11]. In this method, a square block is subdivided into upper 
left, upper right, lower left and lower right quadrants, numbered 
sequentially. In each quadrant, the average pixel intensities and the 
corresponding variances are computed. It is always possible to orient 
(rotate and flip) the block in such a way that the average intensities are 
ordered in one of the following three ways (see the equation (2,3,4)):

𝑎1 ≥ 𝑎2 ≥ 𝑎3 ≥ 𝑎4 (2)

𝑎1 ≥ 𝑎2 ≥ 𝑎4 ≥ 𝑎3 (3)

𝑎1 ≥ 𝑎4 ≥ 𝑎2 ≥ 𝑎3 (4)

In the coding phase, only the range and domain blocks belonging 
to the same class are compared. Moreover, from the isometry 
operations that bring range and domain blocks in their respective 
major classes, it is possible to guess the isometry which maps the 
domain blocks in the range blocks and this avoids a complete search 
of the isometry set. According to the literature, this will speed-up the 
algorithm by the factor of eight [12].

Then, a Fast Fractal Image Compression (FFIC) procedure is 
used where only a few of the neighbouring blocks are considered 
for comparison [15,16]. Thus the size of the domain pool is reduced 
efficiently. For instance, the eight nearest neighbouring blocks is 
considered for search. If the given block possesses a horizontal edge, 
its left and right neighbours also possess similar horizontal edges, 
but not the other six neighbours. Similarly, if the block possesses 
a diagonal edge, then its left-up and right-down neighbours only 
possess a diagonal edge. Based on this property, the search space is 
confined and the compression speed is improved.

The decoding procedure is performed iteratively. In the first 
iteration the decoded image is generated by implementing the 
contractive transformation derived from the fractal code on an 
arbitrary initial image. The result image is used as the starting point 
for the next iteration with the same contractive transformation 
parameters [17]. After a predefined number of iterations, the decoded 
image is converged to be most similar to the given encoded image (see 
the equation (5,6)).

T: R−>R

Tx = s. D+ o 1   (5)

Equation (5) can be simply written as:

X = tx (6)

After several iterations, the resultant image converges to an image 
that approximates the original one [18,19].

 The following block diagram provides a detailed explanation 
about this method.

The block diagram of the compression scheme is shown in Figure 
1.

Results and Discussion
Fractal imaging of agricultural images

The input test image is a multispectral agricultural image of 
Kaveripakkam near Kancheepuram, Tamilnadu, India. The latitude 
and longitude of Kaveripakkam is 12.90545120 and 79.46195060, 
respectively. The spectral band 1 to 4 are used for compression in this 
work. Figure 2 shows the image which is a single band image with the 
size of 256 ×256 pixels.

In this work, the size of each range block is 32×32 pixels. There 
are 64 range blocks in the range pool Figure 3.

 The size of the domain block is 64 × 64 pixels, generating 49 

 

 

Input image Image partitioning 
Fisher’s block 
classification

Fast fractal image 
compression

Fractal decoding
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Figure 1: Block diagram of the compression scheme.

Figure 2: Agricultural image of Kaveripakkam.
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domain blocks in total Figure 4. The blocks in the domain pool are 
contracted to the same size as the size of the range blocks (i.e. 32 × 
32). Size of the domain pool is directly proportional to the complexity 
of the encoding process; the larger the domain pool is, the longer the 
search time.

Fisher’s classification methods
Partitioned image blocks (i.e domain blocks) are classified into 

three classes based on a statistical parameter, mean value. The blocks 
with their corresponding mean values are shown in Figure 5.

Fractal decoding
Fractal decoding follows a straightforward iteration procedure. In 

the first iteration the decoded image is generated by implementing 
the contractive transformation derived from the fractal code on 
an arbitrary initial image. After a certain number of iterations, the 
decoded image is converged (Figure 6(b)); the original image is 
shown in Figure 6(a), for comparison. The convergence of the iterated 
sequence starting with an arbitrary image is theoretically guaranteed 
by the fixed-point theorem [20,21]. The quality of the reconstructed 
image is analyzed using parameters such as Mean Square Error 
(MSE) and Peak Signal To Noise Ratio (PSNR) given in equations (7)
(8), respectively. For a better quality image the PSNR value should be 

higher and the MSE value should be lower.

MSE = ∑ ((∑ 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 𝑖𝑚𝑎𝑔𝑒)|(𝑟𝑜𝑤𝑠 ∗ 𝑐𝑜𝑙𝑢𝑚𝑛𝑠))      (7)

PSNR = ∗  𝑙𝑜𝑔10 (255^2|𝑀𝑆𝐸)            (8)

We performed this procedure for several images; the results are 
shown in Table 1. The results of the MSE and PSNR of the DCT 
method are also presented in Table 2 for comparison.

Comparing the results from Table 1 and 2, the increase of PSNR 
value in FFIC compared to those in DCT is obvious. For instance the 
PSNR of band 2 image from both tables is 42.10 dB in FFIC with its 
MSE being 4 dB, whereas in DCT method PSNR and MSE are 39.52 

 
Figure 3: Non-overlapping range blocks with the size of 32 × 32 pixels.

Figure 4: Domain blocks with the size of 64 × 64 pixels.

Figure 5: Code book containing all domain blocks with their corresponding 
mean values.

(a) (b)
Figure 6: (a) Original agricultural image of Kaveripakkam (b) Reconstructed 
image after 10 iterations.

Images Compression
ratio

Encoding 
time (s)

Decoding time 
(s) PSNR(dB) MSE

Band 1 41.1 56.266 12.7970 39.6928 6.9791

Band 2 38.3 55.8440 12.9220 42.1071 4.0029

Band 3 42.1 57.5940 12.9210 37.1371 12.5710

Band 4 44.7 55.8750 12.8440 34.4768 23.1951

Lena 36.2 56.8750 13.0470 32.2677 38.5754

Table 1: Encoding time, decoding time, PSNR and MSE using FFIC method.

Images Compression ratio MSE PSNR(dB)

Band 1 27.7 10.02 38.12

Band 2 23.6 7.27 39.52

Band 3 26.2 12.12 37.29

Band 4 29.3 13.83 36.72

Lena 25.7 15.41 36.25

Table 2: Comparative results of MSE and PSNR of DCT method.
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dB and 7.27 dB, respectively. The reasons for the improvements are 
as follows. Fisher’s scheme uses a classification based on the mean 
values of the blocks. Moreover, here the number of domain blocks 
within a particular class is reduced which consequently reduces the 
encoding time.

Conclusion and Future Scope
The computational complexity of the fractal image compression 

is one main drawback in this method. Although there are several 
techniques available to speed up the encoding process, they make the 
system more complex, producing worse quality reconstructed images. 
A new FIC method based on the Fisher’s scheme is implemented in 
this paper. In the Fisher’s classification method, the blocks in the 
domain pool is classified into three classes. Hence the search space 
to get the best matched domain block from the domain pool for each 
range block is reduced. Experiment results show that the encoding 
time is reduced without affecting the quality of the reconstructed 
images.

This work can be extended by using it for compressing colour and 
hyper spectral images. In the studied method the range blocks are 
not overlapped. These blocks can be overlapped in the future studies 
to achieve an even higher quality reconstructed images. The same 
method with some modifications can be used in an optical imaging 
system for optimization as well as compression of its images [22-31].
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