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Abstract

Hydrogels are the unique three- dimensional polymeric materials that can 
hold a large fraction of water thus aims to release the drug in a controlled manner. 
They are the interesting class of material as can be tuned towards the subjected 
stimuli and can be engineered to imitate the extracellular environment of the 
body’s tissue hence, makes themselves worthy to be used in tissue engineering, 
drug delivery and in the traditional field of science such as transducer, biosensors 
and actuators. Here in this review an attempt has been made to present a state-
of- art on the hydrogel, its classification on various basis, general synthesis and 
drug loading with a wide focus on its tuning property towards various stimuli 
are discussed. Further its application in drug delivery containing the release 
mechanism with a brief description about how it can be delivered through the 
different route of administration, application in tissue engineering. Last, some 
marketed products of hydrogel available in the market are mentioned.

Keywords: Hydrogel; Smart hydrogel; Drug delivery; Controlled drug 
delivery; Tissue engineering; Scaffold

present in the polymeric structure. These groups assist in absorbing 
the large fraction of biological fluid or water thus helps in hydrogel 
formation [20]. One more enthralling characteristics of hydrogels 
is the porous structure which can be modulated by controlling the 
density of the cross-links in the gel matrix. Their porosity allows the 
incorporation of the therapeutic agent into the gel matrix and delivers 
the active agent at a rate depending manner through the polymeric 
gel network [21].

Hydrogel Classification
Hydrogels can be classified in various ways which are as follows:

Based on source
Hydrogels can be prepared using either natural or synthetic and 

the combination of both the polymers as shown in Table 1. 

Based on method of polymeric composition 
Homopolymer hydrogel: These are composed of one type 

of hydrophilic monomer. They commonly possess cross-linked 
backbone structure [22]. Homopolymer hydrogel can be prepared in 
several possible ways one of the effective ways to form cross-linked 
homopolymer hydrogel is through photoinduced cross-linking for 
instance Kadlubowski et al [23] made a hydrogel with glucose sensing 
property they adopted a novel method of cross-linking through 
radiation between the polymer Polyvinyl Pyrrolidone (PVP) and 
Poly (Acrylic Acid) (PAA) containing glucose oxidase as a glucose 
indicator in deoxygenated aqueous solution with hydrogen peroxide 
as a free radical source. Cross-linked PAA-PVP gel sensitive to pH 
was formed successfully by irradiating at a wavelength 200-800 nm. 
The homopolymeric cross-linked gel containing glucose oxidase is 
commonly utilized as glucose detector or in glucose sensitive devices. 

Introduction
Despite vast and advanced research is going on in the medical 

field a few candidates are successful clinically attributing good 
bioavailability [1]. Controlled drug delivery systems that are meant to 
deliver the drugs at predetermined rate for a pre-programmed period 
is a good alternative to accomplish and overcome the inadequacy of 
low bioavailability of conventional dosage form. The most interesting 
feature of this drug delivery system, attracting the scientist a lot is 
their release mechanism which is precise and timed controlled from 
few hours to month [2,3]. Overall it would be highly advantageous if 
an active agent was released by such system that can sense the signals 
produced by disease, determined the actual extent of signal and then 
release the specific amount of drug in response to the need of the 
physiological condition. In all these respect hydrogels have shown 
characteristics features of a smart drug delivery system [4]. The kudos 
goes to the Wichterle and Lim [5] who for the first time led a milestone 
in the class of hydrogel drug delivery system by proposing the use 
of hydrophilic poly (2-hydroxyethyl methacrylate) PHEMA for 
contact lens [6]. Their pioneer work acted as a revolution, since then 
hydrogels have elaborated their dimensions in several biomedical [7] 
pharmaceutical [8,9] applications as drug delivery vehicles [10,11] 
including personal hygiene, contact lenses, lubricating surface 
coatings, wound healing dressings, three-dimensional (3-D) cell 
culture substrates, and underwater devices [12-15].

Hydrogels are 3-D macromolecular polymeric chains that can be 
easily moulded in any form, shape and size. They do not dissolve and 
can absorb thousand times of their own dry weight in water [16,17]. 
This fabulous property of their, is imparted by some hydrophilic 
domains [18,19] for instance OH, -CONH-, CONH2

-, and –SO3H 
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Co-polymer hydrogel: It comprises of minimum two co-
monomer species in which at least one monomer must be hydrophilic 
in nature to make it swellable [24]. Laden with a stimuli sensed 
property hydrogels are in demand and frequently used as smart 
and intelligent materials [25-28] such as actuators [29], transducer 
[30], optical fiber humidity sensor [31] and optical biosensor [32]. 
Fascinating with the above property of smartness, Chen et al. [33] 
co-polymerized Itaconic acid with N-Vinyl -2-Pyrrolidone (NVP) 
as a monomer and N, N-methylene-bisacrylamide (MBAAm) and 
prepared pH sensed hydrogel by ultra-violet induced method. The 
formed hydrogel was found to be highly pH sensitive. The whole 
study was based on swelling of the co-polymerized hydrogel whose 
value increased from 150 to 3011% with the increase in the pH value 
of the swelling solution which was 4-10. Thus, the pH sensed co-
polymerized hydrogel exhibited a promising vehicle for the delivery 
of Itaconic acid.

Interpenetrating polymer network: An IPN is made up of 
two polymers that are formed without covalent bond but are cross-
linked among similar molecule. Therefore, two meshes with different 
chemistry integrate to each other. In IPN the bulk of the matrix i.e. 
polymer act as a reservoir for the active agent and releases it in a long- 

term manner [34,35].

Interpenetrating polymer network is enriched with the 
applications in delivering the drug in a constant manner over an 
extended period [36]. The property to deliver the drug in a controlled 
manner is actually imparted by the extent of cross-linking [37,38]. 
To see the release of drug in a controlled manner, Angadi et al. [39] 
prepared an interpenetrating polymer network blend microsphere 
of chitosan and hydroxyethyl cellulose containing isoniazid, an anti-
tuberculosis drug and cross-linked it with glutaraldehyde. The formed 
microsphere of isoniazid showed the extended cumulative release up 
to 16 hours by releasing the drug up to 75% with the encapsulation 
efficiency of 50- 66%. 

Based on physical structure
Amorphous: Here, macromolecular chains are arranged in a 

random fashion [40].

Semicrystalline: They are recognized by dense regions of 
macromolecular chains arranged in an ordered manner [40].

Hydrogen bonded or supramolecular/complexation structure: 
They are well known for their 3-D structure [40].

Natural polymer and their derivatives Synthetic polymer Combination of both natural and synthetic polymer
Anionic polymers

Hyaluronic acid [155], Alginic acid [156],
Pectin [157,158], Carrageenan [159].

PEG–PLA–PEG [168], Collagen-PEG [173],

Cationic polymers
Chitosan [160], Polylysine [161]. PEG–PLGA–PEG [169], Collagen-hydroxyethylmethacrylate [174],

Amphipatic polymers
Collagen [162,163],

Fibrin [164].
PEG–PCL–PEG [170], Alginate–Poly(sodium acrylate-coacrylamide) [175],

Neutral polymers
Dextran [165], Agarose [166], Pullulan [167]. PLA–PEG–PLA [171,172]. Collagen-g-poly(acrylic

acid)/kaolin [176].

Table 1:  Hydrophilic polymers used to fabricate hydrogels.

Figure 1: Methods of cross-linking.
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Based on cross-linking: Hydrogels based on types of cross-
linking are divided into two classes physical cross-linking and 
chemical cross-linking [41] shown in Figure 1. 

Polymers possessing covalent bond between them are termed as 
the cross-linked polymer. Chemical cross-linking provides a good 
mechanical strength [42]. While physical cross-linking forms non-
covalent interactions between the polymers [43].

Based on ionic charges
Hydrogels based on ionic charges are of four types [44].

a. Neutral hydrogel (non-ionic)

b. Cationic hydrogel

c. Anionic hydrogel

d. Ampholytic hydrogel 

Preparation of Hydrogel
Fabrication of hydrogel includes physical and chemical cross-

linking methods. The cross-linking is formed by either covalent 
[45,46] or non-covalent interaction [47-49]. Hydrogel possessing 
covalent interactions are termed as chemical gel while non-covalent 
gels are called as physical [50]. A general description of the synthesis 
of a hydrogel is presented in Figure (2).

Hydrogel Drug Loading
Loading of the drug in hydrogel generally involves two methods. 

In the first approach, the polymer to be used for hydrogel is mixed 
with the drug, an initiator and a cross-linker if required, are allowed 

to polymerize having the drug within the matrix [51]. However, in 
the second approach, an already formed hydrogel is allowed to swell 
in a drug solution till equilibrium. In both the mechanism i.e. after 
loading of drug the hydrogel is dried. Drug loading within hydrogel 
is affected by several factors viz. interaction between polymer and 
solvent, cross-linking density of the polymeric network, the presence 
of a solvent etc. All these parameters influence the extent of swelling 
to a great extent. The drug loading per unit mass of a polymer can be 
calculated from the following expression [52].

(Swollen polymer weight-Dry polymer weight)/(Dry polymer 
weight).

Smart Hydrogel
Smart hydrogels are the hydrogels that sense and act quickly 

according to the stimuli or signals perceived. They expand or shrink 
in their volume with respect to changes in the environment such as 
the change in temperature, pH, glucose, light, electric current, sound 
etc. as shown in Figure 3. They are also termed as intelligent as they 
have an excellent ability to return in their primordial form after an 

Figure 2: Method of preparation of Hydrogel.

Figure 3: Schematic presentation of stimuli sensed hydrogel.



Austin J Biomed Eng 4(1): id1037 (2017)  - Page - 04

Mishra B Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

over of the external stimulus to which they have been exposed [53-
55].

Temperature sensitive hydrogel
Hydrogels exhibiting response towards the change in temperature 

are known as thermosensitive or temperature sensitive hydrogel. The 
sole stimulus of their sensitivity is temperature, which is required 
for its gelation [8,56]. Temperature sensitive polymers manifest a 
transition such as lower or upper critical solution temperature in 
the aqueous environment. In the case of polymers with Low Critical 
Solution Temperature (LCST), they remained water soluble below 
the LCST, but changes to water insoluble or sparingly water soluble at 
a temperature termed as upper critical solution temperature (UCST) 
[57]. Some typical examples of thermo responsive polymers are 
shown in Table 2 labeling “L” as LCST and “U” as UCST [58].

The phenomenon of conversion from solution to gel is termed 
as a sol-gel transition [59-61]. When a polymer remains in water 
three types of interaction take place i.e. between molecules of water, 
between molecules of polymer and water and between molecules 
of polymer. Polymers showing lower critical solution temperature, 
when undergoes increase in temperature results in negative free 
energy which makes association of water and polymer unfavourable, 
promoting the other two types of interaction. The thermodynamics 
behind this can be expressed as 

∆G=∆H-T∆S.

This negative free energy (∆G) is attributed to the higher entropy 
(∆S) in response to change in enthalpy (∆H). The increase in entropy 
occurs due to the association between water molecules (The major 
factor for the cause of interaction). This phenomenon is termed as 
hydrophobic effect [59,62,63]. Resultant, a conformational change in 
a polymer at a critical solution temperature occurs that leads to the 
reversible linking of the polymer chain and therefore the gel turns to 
the solution form as the thermal stimulus is removed.

pH sensitive hydrogel
pH sensitive hydrogel is a gel composition that responds to the 

pH of the environment. The principle of the gel is a structure that 
either shrinks or swells in response to the pH of the system [64]. 
pH sensitive polymers contain acidic or basic side groups attached 
to their backbone that may accept or release the proton with respect 

to the change in the surrounding pH [65,66]. Polymers with a wide 
range of ionizable group are called as the polyelectrolyte. In the case 
of anionic/acidic group, volume of hydrogel increases as the pH of the 
media increases while declines for polymer containing cationic/basic 
groups [67]. Polymers typically used for fabricating pH responsive 
hydrogel are poly (hydroxyethyl methacrylate-co-acrylic acid) [68], 
Polyvinyl Pyrrolidine (PVP) [69], chitosan [70], Poly (methacrylic 
acid) [71].

Glucose sensitive hydrogel
Glucose sensitive hydrogel are composed of polymers such 

as N-(2-(dimethylamino) ethyl)-methacrylamide [72], N,N-
(dimethylacrylamide) [73] that can model the function of sensitive 
organs and tissue such as pancreas whose function is to release insulin 
[74]. The strategy of mimicking the natural response of the pancreas 
in a diabetic patient via. glucose sensitive polymers involves the 
appropriate delivery of insulin in response to the variation of glucose 
level in the body [75,76]. The mechanism behind the controlled 
release of insulin from the system to maintain its level in a diabetic 
patient involves an enzyme substrate reaction where glucose reacts 
with glucose oxidase forming gluconic acid, resulting in a decrease in 
the pH of the environment. With the change in pH, the gel swells or 
shrink depending on the characteristics of the particular polymer of 
the system. Insulin is released from the system with the change in the 
pores size of the polymer [77].

Light sensitive hydrogel
The light sensitive hydrogel has been extensively used in various 

biotechnological application such as light controlled enzymatic 
bioprocessing system [27], photo triggered targeted drug delivery 
systems [78], and photo controlled separation/recovery systems in 
bioMEMs (Biological microelectro mechanical system) formats. 
These hydrogels are supposed to deliver the light in a controlled 
way with accuracy. The light sensitive hydrogel is applicable in the 
fabrication of optical switches, display unit, and especially in optical 
drug delivery system [79,80].

Electric current sensitive hydrogel
Electric current induced hydrogel are basically composed of 

polyelectrolyte and shrinks or swells in response to an applied electric 
field [81]. Polymers contain a large number of the ionizable group on 
their backbone chain thus sensitive towards both pH and electricity 
[82]. Various reports are already existing stating about the use of 
electric current in vivo in the form, for instance, iontophoresis and 
electroporation in the application of dermal and transdermal drug 
delivery [83-85]. Lin et al. [86] reported, synthesis, structure and 
electric field sensitive conductive IPN hydrogel of polyacrylate/
polyaniline (PAA/PANI) and poly (2-acrylamido-2-methyl 
propylsulfonic acid-acrylic acid)/polyaniline [P(AMPSAA)/ PANI] 
for its application in drug delivery, switches, sensors and for actuators. 
The fabricated conductive IPN hydrogel showed a porous structure of 
numerous PANI nanofibers. To observe its affinity towards electric 
field they subjected the hydrogel in an aqueous solution of NaCl 
resulted in its bending towards the anode and as soon as the stimulus 
was removed the hydrogel returned to its real position. 

Sound sensitive hydrogel
Ultrasound sensitive hydrogel is potential to deliver the drug in an 

Polymer Types of polymer
Poly(N-isopropylacrylamide)

(PNIPAM) L

Poly(N-n-propylacrylamide)
(PNNPAM) L

Poly(N-cyclopropylacrylamide)
(PNCPAM) L

Poly(N,N-diethylacrylamide)
(PDEAM) L

Poly(N-(1 hydroxymethyl)propylmethacrylamide) 
(PHMPMA) L

Poly(N-acryloylglycinamide)
(PNAGA) U

Poly(N-acryloylasparaginamide)
(PNAAAM) U

Poly(methacrylamide)
(PMAAm) U

Poly(acrylonitrile-co-acrylamide)
(P(An-co-AM)) U

Table 2: Examples of different types of thermoresponsive polymers.
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“on-off switch” manner. For these system sound acts as a permeation 
enhancer and helps the drug to cross the biological barrier. For 
instance, Kwok et al [87] prepared a self assembled ultrasound 
sensitive system made up of methylene chain where the drug 
insulin present within the polymer (co-polymer of 2-hydroxyethyl 
methacrylate and ethylene glycol dimethacrylate). The whole system 
was so sound sensitive that it showed the pulsatile release of insulin 
just in one minute when got exposed to the ultrasonic exposure 
that resulted in disruption of the ordered methylene chain hence, 
controlled release of insulin.

Drug Delivery
Polymeric hydrogels are drawing attention since the 1950s 

[88]. Being blessed with the boon of smartness, it can be triggered 
externally and exhibits spatiotemporal release mechanism [89]. 
Owed with rapid and controllable diffusion rate [90], they have 
been considered as a promising vehicle for the encapsulation and 
controlled release in numerous physiological conditions for instance 
[91] cancer therapy [92-94], osteoarthritis [95], diabetes [96,97], 
viral and bacterial infection [98], cardiac disease [99] etc. The main 
benefit proffered by hydrogel in drug delivery application is their 
drug delivery in controlled manner for a long period thus enabling 
the active pharmaceutical ingredient over a longer duration [100]. 

As hydrogels possess excellent property to imbibe water, that is 
even greater than 90% of their own weight. This unique hydrophilic 
property makes them classic from other drug delivery systems. 
Delivery of therapeutic agent from hydrogel occurs mainly through 
three mechanisms diffusion-controlled systems, swelling-controlled 
systems and chemically controlled systems [101].

The diffusion controlled release system is the most accepted and 
commonest among all the drug release mechanism models available 
for describing the drug release from the hydrogel, and are divided 
as reservoir device (Figure 4) and matrix device (Figure 5) [102]. 
In reservoir system, the drug remains within a core, surrounded 
by a polymeric membrane. Drug release from such system through 
polymeric membrane follows Fick’s First law of diffusion [103-105].

J(i = -D_ip (dC_i)/dX)

Where J_i molar flux of the drug is is, D_ip is the diffusion 
coefficient of the drug in the polymeric membrane. 

To perpetuate release of drug from such system at a constant flux 
the device must be fabricated by incorporating the drug in higher 
concentration in the core or center resultant letting the drug release 
at a constant rate [106]. Matrix system involves uniform distribution 
of drug in the overall structure of the hydrogel. Concerning with 
the reservoir type, matrix system releases the drug through the 
macromolecular pores in the polymeric hydrogel rather than from 
the core as in reservoir system. Here, in this case, the release rate is 
proportional to the square root of time which is constant and time 
independent in reservoir system [106].

In swelling controlled mechanism drug diffusion is faster than 
hydrogel expansion. Here the release of the drug from the hydrogel 
significantly depends on the stretched volume of the device [103,107]. 
The chemically controlled release mechanism is influenced by 
chemical reactions occurring within the device. The release of the 
drug from the system depends on reactions, for instance, polymeric 
chain cleavage via hydrolytic or enzymatic degradation reaction or 
reversible or irreversible reactions taking place between the polymeric 
network and the releasing drug [102,108]. Table 3 summarizes some 
of the experimental studies done for hydrogel drug delivery.

The release of drug in a controlled manner and further its delivery 
to the ocular route is one of the challenging tasks for a pharmaceutical 
engineer due to the inherent protective nature of eyes such as 
blinking and tear flow that actively supports rapid clearance and 
low bioavailability thus low therapeutic response [109]. Concerning 
the above mentioned problems various steps have been taken such 
as fabrication of ointments [110], suspension [111], emulsion [112], 
micro [113], nanocarrier systems [114,115], inserts [116,117] and 
liposomes [118,119] etc. Although they have been proven to be 
successful in increasing the bioavailability however, they are stacked 
with several limitations too, for instance, viscous nature of ointment 
leading to the blurring vision [120] or non-homogeneity, cake 
formation or aggregation of the suspended particle in the suspension 
[121]. The same limitation with the ocuserts, as they pose a problem 
in inserting and removal especially in the geriatric patient [122,123]. 
Hydrogel as smart emerging technology could be a useful device for 
ocular drug delivery. Presently pharmaceutical engineers are giving 
their vigorous effort towards fabrication and evaluation of such ocular 

Figure 4: Diffusion controlled release mechanism of drug through reservoir 
system.

Figure 5: Diffusion controlled release mechanism of drug through matrix 
system.
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delivery system carrying numerous desired properties such as easy 
application, decreased dosing frequency, patient compliance. On all 
these parameters hydrogels stand as a standard [124]. For instance, Xu 
et al. [125] proposed an in situ injectable polysaccharide cross-linked 
hydrogel for the ocular delivery of Avastin®. Commercially Avastin®, 
chemically named as Bevacizumab is available for treating age related 
macular degeneration and proliferative diabetic retinopathy. Since 
the drug is suffering from short elimination half-life time resultant, 
it requires repeated administration. The fabricated in situ hydrogel 
loaded with Avastin was prepared by mixing glycol chitosan and 
oxidized alginate aqueous solution. Through experiment, it was 
found that encapsulated Avastin showed an initial burst release at 
its initial stage within four hours followed by sustained release for a 
period of three days. The main reason behind the slow release of drug 
from hydrogel was dependent upon increased alginate concentration 
present as oxidized form.

Hydrogel implants for the release of antibiotics are now becoming 
a trend. Treating chronic infections through conventional manner i.e. 
administration of antibiotic via oral or systemic route might pose a 
fluctuation in serum concentration. To avoid this, local application is 
found to be suitable as it provides the maximum concentration of drug 
at the site of infection with minimum side effects. Numerous local 
delivery devices for antibiotics have been taken into consideration 
and are mostly composed of non degradable polymers. Application 
of such non-degradable polymer actually is the main problem due 
to its undetermined period of antibiotic release from drug delivery 
device composed of a synthetic polymer. To show the importance of 
delivery of antibiotic in a controlled manner from hydrogel made up 
of natural polymer Changez et al [126] prepared an Interpenetrating 
Polymer Network (IPN) implant device loaded with Vancomycin 

hydrochloride (VCI) and Gentamicin sulphate (GS) with polymers 
poly (acrylic acid) and gelatin cross-linked using 0.3 mol % of N,N-
methylene bisacrylamide and 1% w/w of glutaraldehyde, respectively. 
The blank and the drug loaded hydrogel implant were applied for 
treating osteomyelitis in the rabbit. They divided twelve rabbits 
into four groups and each group were treated with the following 
combination i.e. 12±1 mg of cross-linked acrylic acid and gelatin 
named as 1a containing 22% w/w of GS, 12±1 mg of cross-linked 
acrylic acid and gelatin named as 1b containing 44% w/w GS, 16±1 
mg of cross-linked acrylic acid and gelatin named as 1b containing 
44% w/w GS and 16±1 mg of cross-linked acrylic acid and gelatin 
labelled as 1c containing 44% w/w VCl. The drug concentration was 
measured following its implantation in the adjacent tissue of femoral 
cavity, and serum. Authors through their experiments observed that 
among all the four implanted device, no drug was found after 21 days 
at the treated local site with the implanted device in group 1a and 1b 
(12±1 mg), however after 6 weeks the drug Gentamicin sulphate and 
Vancomycin hydrochloride in a quantity of 16±1 mg 1b (44% w/w 
GS) and 16±1 mg of 1c (44% w/w VCl) respectively within implanted 
IPN hydrogel device were detected at the treatment site that revealed 
to be the best and cured the infection within 6 weeks.

Another application involving the release of drug through this 
device is oral administration of monoclonal antibodies (mAbs) in 
GI tract and systemic disease. Developing an oral delivery of mAbs 
is a challenging task as they lose their biological activity because of 
physical and chemical instability in vivo. However Carrillo-Conde et 
al. [127] took this challenge and designed a pH sensed hydrogel with 
outstanding transmucosal delivery of anti-TNF- α for Inflammatory 
Bowel Disease in the GIT and systemically to be used for rheumatoid 
arthritis. The polymer used for the experiments were P(MAA-g-EG) 

Polymer used for fabricating hydrogel Drug carried within system Application Reference

Mixture of chitosan and alginate Bevacizumab Ocular dug delivery 147

Polyacrylic acid and gelatin Vancomycin hydrochloride
Gentamycin sulphate Local drug delivery for antibiotic 148

P(MAA-g-EG) and
P(MAA-co-NVP) Anti-TNF- α Transmucosal drug delivery 149

Poly(ethylene glycol)-grafted-chitosan Cyclosporine A Subcutaneous drug delivery 152

Copolymer of polyethylene glycol (PEG) onto phthaloyl chitosan Ciprofloxacin Pulmonary drug delivery 158

Quaternized chitosan and poly(ethylene glycol) Insulin Nasal drug delivery 160

Table 3: Application of hydrogel in drug delivery.

Growth factor Tissues to be treated Function

Ang-1 Blood vessel, heart, muscle Blood vessel maturation and stability

Ang-2 Blood vessel Destabilize, regress and disassociate endothelial cells from surrounding tissues

     FGF-2 Blood vessel, bone, skin, nerve, spine Migration, proliferation and survival of endothelial cells

BMP-2 Bone, cartilage Differentiation and migration of osteoblasts

BMP-7 Bone, cartilage, kidney Differentiation and migration of osteoblasts, renal development

EGF Skin, nerve Regulation of epithelial cell growth, proliferation and differentiation

EPO Nerve, spine, wound Healing Promoting the survival of red blood cells and Development of precursors to red blood cells

HGF Bone, liver, muscle Proliferation, migration and differentiation of mesenchymal stem cells

VEGF Blood vessel Migration, proliferation and survival of endothelial cells

Table 4: Different Growth factors in Tissue engineering.

Ang: Angiopoietin; bFGF: Basic Fibroblast Growth Factor; BMP: Bone Morphogenetic Protein; EGF: Epidermal Growth Factor; FGF: Fibroblast Growth Factor; HGF: 
Hepatocyte Growth Factor; VEGF: Vascular Endothelial Growth Factor.
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and P(MAA-co-NVP). Hydrogel composed of these two polymers 
showed an outstanding swelling behaviour, with improved protein 
loading and release at neutral pH imitating the small intestine 
conditions, as well as, these hydrogel systems maintained the antibody 
bioactivity upon release resulting in the systemic circulation enabling 
effectively performing its biological function.

Thermosensitive hydrogel meant for sol-gel transition for implant 
drug delivery based on the natural polymer is of keen interest. 
Their sol form helps in injectable administration and gel form in 
controlled release [128,129]. For instance Jiang et al. [130] prepared 
poly(ethylene glycol)-grafted-chitosan (PEG-g-CS) hydrogel and 
examined the cytotoxicity of cyclosporine A, in vivo degradation and 
its release from grafted polymer. Cytotoxicity was experimented using 
L929 murine fibrosarcoma cell line. Degradation and drug release 
in vivo were evaluated by subcutaneous injection of the hydrogel 
into Sprague-Dawley rats. It was observed that PEG-g-CS polymer 
exhibited no significant cytotoxicity when the drug concentration 
was below 3 mg ml−1. Upon implantation, PEG-g-CS hydrogel 
maintained its integrity for two weeks and in the third week collapsed, 
and merged into the tissue. The hydrogel exhibited sustained release 
of cyclosporine A for three weeks with no significant burst release in 
vitro and achieved the effective drug concentration in vivo for more 
than five weeks, showing almost the same bioavailability to chitosan/
glycerophosphate hydrogel.

Pulmonary drug delivery is considered as the most useful means 
of drug delivery because of its large surface area for absorption and 
high solute permeability [131]. In the case of respiratory diseases 
such as asthma or cystic fibrosis [132], requires local administration 
of antibiotics in a sustained release manner [133,134]. Though these 
kind of formulations are quite effective but not enough to release the 
drug in a sustained way as they exhibit rapid clearance of inhaled 
particles mainly through alveolar macrophage uptake [135]. Hence 
to show an effective delivery of drug to lungs so as to increase its 
residence time Du et al. [136] prepared swellable Ciprofloxacin-
loaded nano-in-micro hydrogel particles for local lung drug delivery. 
The basic concept behind this work was to develop swellable and 
respirable system because the particles when inhaled initially remains 
in aerodynamic size in a dry state but get swell and increases in size as 
soon as it moves towards the wet respiratory tract. To get such micro 
hydrogel embedded with the nano-sized drug they grafted copolymer 
of Polyethylene Glycol (PEG) onto Phthaloyl Chitosan (PEG-g-
PHCs) self [135] assembled with the model drug Ciprofloxacin to 
form the drug loaded nanoparticle. Further, these nanoparticles 
were then encapsulated into Ca2+ cross-linked alginate hydrogel 
microparticle. Finally the formed formulation was then evaluated for 
size in vitro release study and in vivo pharmacokinetic studies that 
revealed the loaded drug in nanosize range of 218 nm embedded 
within 3.9 micron hydrogel particles exhibited a rapid initial swelling 
within 2 minutes and showed rapid initial release of ciprofloxacin 
within the first 5 hours followed by a relatively slow release up to 
144 hours. Whereas in vivo pharmacokinetic studies performed 
with formulations delivered to rats Ciprofloxacin concentrations in 
plasma, lung tissue and lavage were measured up to 7 hours.

Nasal drug delivery in the recent year has been used as a popular 
and alternative route for systemic medication because of various 

advantages such as avoidance of first pass metabolism, large surface 
area, porosity in the endothelial membrane etc. [137]. Taking such 
tremendous properties of nasal drug delivery in a view Wu et al. [138] 
prepared a thermosensitive hydrogel of quaternized chitosan and 
poly (ethylene glycol) to deliver Insulin as a model drug through nasal 
route. Giving Insulin through this alternative route was beneficial and 
compatible rather than receiving it through a painful means i.e. via 
injection in the patients suffering from Insulin-Dependent Diabetes 
Mellitus (IDDM). The thermosensitive hydrogel by just mixing 
N-[(2-Hydroxy-3-Trimethylammonium) Propyl] Chitosan Chloride 
(HTCC) and Poly (Ethylene Glycol) (PEG) with a little amount of α-β-
Glycerophosphate (α-β-GP). The formed formulation then showed 
a transition from solution to non-flowing hydrogel around 37°C for 
several minutes. Due to the low viscosity at room temperature, it 
can be dropped or sprayed quickly into nasal cavity and spread on 
the nasal mucosa in the solution state. After administered into the 
nasal cavity, the solution transforms into viscous hydrogel at body 
temperature, which decreases nasal mucociliary clearance rate and 
the drug release. Further during animal testing too, the hydrogel 
formulation was found to reduce 40–50% of initial blood glucose 
concentration blood glucose concentration for at least 4–5 hours after 
administration, and no cytotoxicity was found after application.

Tissue Engineering Applications of Hydrogel
Tissue engineering is rapidly emerging and extensive 

multidisciplinary field including biomedical science, cell biology, 
cell material interaction and surface characterization [139]. Tissue 
engineering shows its awesome effect when a single part or the 
entire tissue or organ fails. Although several strategies are there for 
the treatment for instance repair or replacement with a natural or 
synthetic substitute. However, synthetic substitutes might pose a 
problem when used during surgical method or implant application 
[124]. Tissue regeneration strategies include four components (i) 
selection and isolation of tissue of interest (ii) scaffolds either natural 
or synthetic acting as a platform for cell function and transplantation, 
(iii) signalling molecule as protein or growth factors showing the 
cellular function of interest, and (iv) bioreactors hosting, nurturing 
and providing a biologically active environment for cell expansion 
and differentiation [139]. Some of the recent applications of hydrogel 
in tissue engineering are as follows.

Hydrogel as stem cell transplantation carrier
Hydrogel for stem cell transplantation has been emerged out 

as an extraordinary achievement in tissue engineering. This unique 
3-D matrix epitomizes the existing natural extracellular matrix and 
provides a simulated natural environment for the cell behaviour and 
leaving the limitations associated with the conventional cell based 
therapies [140]. Their high water content helps in exchange of ions, 
metabolites, and nutrients with the fluids of the surrounding tissue 
thus maintain the viability of the transplanted cell [141]. Recently 
efforts have been poured towards injectable hydrogels for the repair 
and replacement of body tissues [142]. For example, Wang et al. 
[143] prepared an injectable biodegradable hydrogel made up of 
Oligo [Poly (Ethylene Glycol) Fumarate] (OPF) to encapsulate the 
mouse embryonic stem cell to treat Myocardial Infarction (MI). The 
embryonic stem cell encapsulated in OPF hydrogel is injected into 
the left ventricular wall in the rat MI model. Under observation of the 
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four weeks, OPF hydrogel was found to reduce the infarct size and 
collagen deposition improved the cardiac function.

Hydrogel as space filling scaffold carrier
Scaffolds are the simplest form of space filling agent and are used 

in various applications including bulking material, also termed as 
bioactive ‘glue’. Scaffolds function is to provide a large volume for 
vascularization, new tissue production and remodelling so as to 
make easy the host tissue integration upon implantation. A desirable 
scaffold for tissue engineering should have the potential to provide 
an Extracellular Matrix (ECM) simulated environment so as to 
interact with the surrounding native cells and tissue [144]. Hydrogels 
offer as an attractive scaffold biomaterial because of resemblance 
with the tissue ECM as well as their delivery in a minimum invasive 
manner [145]. For instance Park et al. [146] made a biodegradable 
hydrogel scaffold of water soluble Poly (Ethylene) Glycol (PEG) 
and water insoluble Poly(ε-Caprolactone) (PCL) and used it as a 
vehicle for delivering rabbit chondrocytes to form neocartilage. The 
scaffolds were prepared by salt leaching method. It was found that 
hydrogel possessing a low amount of PEG showed less chondrocyte 
differentiation while high content exhibited better chondrocyte 
differentiation.

Hydrogel for growth factor delivery in tissue engineering
Growth factors are signaling molecules that command the cell and 

helps in tissue regeneration by controlling overgrowth factor delivery 
[147]. Various examples of growth factors and their functions are 
enlisted in Table 4 [148].

Exogenous administration of growth factors in tissue engineering 
suffers a lot of problems because of its inactivation or elimination 
after intravenous delivery [149,150]. Hydrogels can be a good 
alternative for such problems [151]. Delivery of growth factors 
through this device in a spatiotemporal method provides a targeted 
location and avoids undesirable side effects [152,153]. To study the 
delivery of signaling molecule as protein, Sun et al. [154] developed 

new hybrid hydrogel for delivery of Bone Morphogenetic Protein 
(BMP). The biodegradable, and cell compatible hydrogel was formed 
by combining the properties of arginine and gelatin methacrylamide 
through UV photo-cross linking method. The formed hydrogel of 
Gelatin Methacrylamide (Gel-MA) and arginine based unsaturated 
non-peptide polycations (Arg-UPEA) carrying BMP showed an 
outstanding cell attachment and proliferation and also released the 
protein drug in controlled and sustained release manner.

Marketed Products of Hydrogel
Currently, hydrogel has spread its wing from research laboratory 

to market. Some of its widely used marketed products are shown in 
Table 5.

Conclusion
In the past few years, hydrogel as a drug delivery system has 

undergone an extreme advancement. The main property that makes 
it unique from another delivery system is its quick responsiveness 
towards different stimuli which is nowadays is of significant 
consideration for pharmaceutical engineers. Their application is not 
only limited to drug delivery but is widely applicable in the traditional 
field of science such as sensing, transducing and actuating etc. Further 
with the advent and degree of cross-linking methods significant 
changes can be seen in the physical properties of the hydrogel 
polymer such as elasticity as they can reform to their original form, 
decrease in the viscosity as it will prevent polymers to flow etc. all 
these changes in physical property certainly affect the formulation 
according to the need. Being biocompatible and biodegradable in 
nature they have shown their potential and sustainable ability in 
delivering the drug and protein over a long period of time. Another 
drastic achievement that has been imparted by the hydrogel, is in 
the area of tissue engineering. Hydrogel has acted as an excellent 
biomaterial for cell delivery as it can mimic the same structural and 
compositional property with the existing natural extracellular matrix 
so as to provide firm integrity to the tissue constructs. Thus, it can 

Product Product Type Main chemical Constituent Characteristic

Aquasorb Wound dressing Polyvinyl pyrrollidone and water A sterile transparent hydrogel that provides a moist, cooling and pain relieving 
environment to the wound. [177].

SAF-Gel Wound dressing Alginate It is especially useful for dry wounds. Provides an optimum moist environment as well 
as help in autolytic debridement to the wound. [178].

Vigilon Hydrogel sheet Polyethylene oxide and 96% 
water

It is a non-adherent hydrogel sheet. Applicable for skin tears, minor burns and radiation 
reaction. Once applied gives moist environment to the wound. Further cross-linking of 

polyethylene provides an additional support to the dressing. [179].

Flexigel Hydrogel sheet Polyacrylamide with hydrophilic 
polysaccharide particle

It inhibits the physical separation between the wounds and protects it from external 
environment to control the bacterial infection.  [180].

Derma Gran Impregnated gauze Zinc and source of vitamins such 
as vitamin A, B6 and C

It is a kind of hydrophilic wound dressing. This acts as a filler and with its hydrogel 
property absorbs wound exudates and creates moist environment. [181].

Curafil Impregnated gauze Glycerine, Propylene glycol It consists of a gauze sponge, filled with transparent hydrogel that provides a natural 
moist environment to the wound [182].

Restore Impregnated gauze Calcium alginate This kind of wound dressing provides not only superior absorbency but also excellent 
wet strength. [183].

Transeal Moisture vapour 
permeable film Polyurethane

It is a clear, permeable to the gas and moisture and allows skin breathable kind of 
wound dressing that provides a possible moist environment to the wound helping it in 

quick cure. [184].

Acuvue Contact lens Silicone hydrogel
These contact lenses are available in various pack sizes. All products of Acuvue contact 

lens aim is to provide at least 96% of oxygen permeability to the eyes in order to give 
feeling of smoothness in every blink. [185].

Biofinity Contact lens Silicone hydrogel This contact lens provides a natural wettability so that no need to add additional drop to 
make it moist. [186].

Air Optix Contact lens Silicone hydrogel These contact lenses maintain and sustains the moisture for almost all and every day. 
[187].

Table 5: Different commercially available products of hydrogel.
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be predicted that the hydrogel system which is full of versatility will 
certainly open new arenas in drug delivery.

Future Prospective 
Hydrogel controlled drug delivery system has a bright future 

and scope in the field of pharmaceutical and tissue engineering. 
The use of ‘smart’ hydrophilic polymers will certainly bring a great 
revolution for the delivery of therapeutics. Utilization and synthesis 
of novel polymers or grafting the existing natural polymer is an 
another approach to proceed towards the success. Their soft nature 
and biocompatibility are one of the important and demanding feature 
covering not only almost the entire area of pharmaceutics as well as 
biomedical but also are used in biosensing device, microchips etc. In 
addition to this exhibiting intelligence in its surrounding will surely 
provide improved methods for delivering thermolabile substances 
too. With such inherent properties, versatile nature and further 
advancements, hydrogel must be going to show more potential and 
remarkable application in biomedical and pharmaceutical technology.
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