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Na+, consequentially depolarizing the membrane potential and 
evoking action potentials. Since its first descrip tion, ChR2 has been 
widely used in the field of neuroscience to manipulate the electrical 
activities of various types of neuron cells both in vitro and in vivo 
[18-21]. Meanwhile, ChR2 has been successfully expressed in other 
type of cells such as skeletal muscle, stem cell, and HEK cell [22-
24]. Recent studies using trans genetic mice [25] and zebrafish [22] 
have demonstrated that ChR2-mediated optical pacing of the heart 
can be performed in vivo, opening up new vistas of application in 
the therapy of cardiac arrhythmias and heart failure. Compared with 
CRT, optical pacing has the advantages of being a relatively easier 
implant procedure (and therefore safer), having remote control 
access, and having lower energy consumption (and therefore a longer 
life time). Most importantly, optical pacing can be easily expanded 
to multiple sites, making it particularly suitable for CRT in advanced 
heart failure. Optogenetic pacing also has evident advantages over 
the biological pacemaker, another potential alternative to the electric 
pacing device, such as precise and active control. However, some 
major issues must be addressed before this promising technique can 
be utilized in a clinical setting. 

First of all, it is critically important to examine if ChR2 can be 
stably expressed in adult (healthy and failing) hearts and if long-
term in vivo ChR2 expression has deleterious effects on cellular 
and cardiac functions.  In this context, Brugemann et al. [25] have 
created the transgenic mice that express cardiac specific ChR2 and 
investigated the electrophysiology of cardiomyocytes  expressing 
ChR2. They showed that ChR2 expression did not significantly alter 
cardiac action potentials and calcium transients. In addition, they 
showed that illuminating as few as 50 cardiomyocytes is sufficient for 
functional cardiac pacing, suggesting that only a small volume of the 
heart tissue need to express ChR2. This increases the feasibility of in 
vivo application of optogenetic cardiac pacing. Having that said, there 
is still lack of report of ChR2 expression in heart failure.

Another important issue needs be addressed is whether and 
how long-term, continuous optical pacing affects cardiomyocyte 
electrophysiology and function. While it is difficult to examine 
it in vivo, isolated cardiomyocytes such as H9C2 or neonatal rat 
ventricular myocytes expressing ChR2 can be paced with blue light in 
vitro (e.g. in incubator) [26]. Mitochondrial energetic state, ions (e.g., 
Ca2+ & Na+) homeostasis and action potentials can be measured using 
confocal microscopy and/or patch clamp setup before and after the 
long-term pacing to determine its effect.

One of the technical challenges to overcome is to efficiently transfer 
ChR2 gene to cardiac tissue. One of the commonly used methods 
is viral gene delivery. The adenovirus or Adeno-Associated Virus 
(AAV) methods are used to induce transient gene expression that 
ranges from days to years [27, 28]. The more stable and long-lasting 
gene transfer can be achieved using lentivirus. The disadvantages of 

Heart Failure (HF) is a disease of wide prevalence in the United 
States (5.7 million) and the incidence increases steady (>550,000 new 
cases per year) as the general population ages [1]. Despite recent 
advances in drug treatment, heart failure mortality approaches 60% 
within 5 years of diagnosis. Furthermore, in patients with advanced 
heart failure, the disease process not only depresses cardiac contractility 
but also affects the conduction pathways by causing a delay in the 
onset of right or left ventricular systole [1,2]. This intra ventricular 
conduction delay may further impair the contractile ability of the 
failing heart and enhance the severity of mitral regurgitation. These 
patients are usually not responsive to drug treatment and the only 
medical interventions currently available are heart transplantation 
and Cardiac Resynchronization Therapy (CRT), which utilizes 
implantable leads to optimize atrioventricular delay and synchronize 
the beating of the two ventricles [3-10]. Although CRT has been 
shown to improve cardiac function, symptoms and quality of life in 
some HF patients [11], malfunctions related to abnormal sensing 
of electrical activity or failure to capture may occur, with the most 
desire complications being embolic events, lead displacement and 
replacement, pneumothorax and battery depletion. In addition, CRT 
usually requires the implantation of multiple leads into the atrium 
and ventricles [12], which may cause additional problems such as 
unsuccessful implantation, coronary sinus dissection or perforation, 
and infection. Indeed, device-related infections have been rising 
steadily in the past decades not only because of the increases in the 
number of device implantations but also because of a higher incidence 
of bacterial infections in the US and worldwide [13]. Finally, CRT is 
not effective for all heart failure patients. Therefore, development of 
alternative therapy that overcomes these shortcomings is critical. 

Recent advances in the innovative field of opto genetics have led 
to a variety of strategies to produce an optical pacing device that 
may complement or replace the multi-wire electrical pacing units 
in the context of CRT. Optogenetics utilizes genetically targeted, 
light-activated proteins, such as Channel Rhodopsin 2 (ChR2), 
to remotely and dynamically mediate activities of excitable cells in 
live animals (for review see references [14-17]). Once activated by 
blue light (475 nm), ChR2 allows the influx of cationic ions, mainly 
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viral gene delivery include innumogenesis and tumogenesis [29]. 
Another way to transfer gene in vivo is via stem cells such as human 
Induced Pluripotent stem (iPS) cells and Mesenchymal Stem Cells 
(MSC). iPS can be easily obtained from patient skin biopsy specimens 
and differentiated to fully immune-compatible cardiomyocytes. Thus, 
transplantation of iPS cells expressing ChR2 is an appealing strategy 
to induce stable ChR2 expression in heart tissue.

Finally, it is essential to develop and optimize method for safe and 
efficient light delivery in order to achieve in vivo optical pacing for 
heart failure treatment. The visible light used to activate ChR2 or its 
red-shift mutants such as C1V1 or MChR1 does not penetrate deep 
into tissue. Thus, it is infeasible to illuminate the tissue expressing 
rhodopsin channels through the chest wall. Alternatively, epicardial 
illumination has been used to stimulate mouse hearts expressing 
ChR2, suggesting that it could be used for future clinical application. 
Epicardial illumination can be achieved by using flexible strips of 
Light-emission Diodes (LED) arrays [30]. Other possibilities include 
electroluminescent foils and wires.

In summary, although the application of optogenetics in cardiac 
pacing is still in the infancy, this innovative approach has great 
potentials in CRT of heart failure due to its capability of precise, 
multi-sites and remote control of cardiac tissue. Future experiments 
are needed to characterize the effects of long-term ChR2 expression 
and illumination on cardiac physiology and function and to develop 
and optimize strategies for efficient ChR2 gene transfer and light 
delivery.  
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