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Abstract
Cancer is a complex invasive genetic disease and a significant 

cause of mortality worldwide. To effectively treat cancer using targeted 
biopharmaceuticals, it is essential to uncover the biological functions of genes, 
proteins and metabolites underlying abnormal cancer cell growth. The high-
throughput Omics technologies have been proved as efficient approaches 
to investigate the initiation, development, and progression of cancers. This 
article reviews the cancer Omics and its applications in targeted anticancer 
biopharmaceuticals development. We first discuss how the established Omics 
knowledge and integrated data mining tools have been used to discover 
cancer biomarkers that reveal the clinically relevant diagnoses, prognoses and 
therapies. Deciphering cancer drivers has led to the specific design of effective 
cancer therapeutic approaches such as those target specific regulator, core 
pathways, glycolysis, and mitochondria. The developments of targeted cancer 
therapy, biopharmaceutical, and personalized medicine facilitated by Omics 
technologies are then described. Development of therapeutic proteins to treat 
various cancers has been greatly benefited from the significant findings in 
cancer mechanism studies using Omics. For instance, the recent advances in 
CHOnomics have enabled the rational bio processing design to improve clinical 
efficiency of biopharmaceuticals. The potential applications of CHOnomics in 
Chinese hamster ovary (CHO) cell-based therapeutic proteins production are 
finally presented. 
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approaches to investigate the initiation, development, and progress 
of cancers.

The completion of human genome project and the access to 
public cancer genomics databases, e.g., International Cancer Genome 
Consortium and The Cancer Genome Atlas, have provided us the 
opportunity to study cancer at genome scale [5,6]. The genome 
comparison between normal and transformed cells has opened the 
door to understand the genome background of cancer. Furthermore, 
the development of new-generation DNA sequencers, such as Illumina 
HiSeq 2000 and Life Tech SOLiD, enables the comprehensive and 
complete analysis of whole genome, DNA copy number, methylation, 
and transcription. Transcriptomics is a functional genomics analysis 
by qualifying and quantitating mRNA expression at transcription 
level. The complied human gene expression data can be downloaded 
from the database of Gene Expression Omnibus [7]. The advances 
in microarray [8] and next-generation sequencing [9] which has 
significantly reduced sequencing cost to about $1,000 each sample, 
allow for the interpretation of gene expression and transcription 
regulation in the research labs. Moreover, multiple gene expression 
signatures in cancer cells have been recognized by the quantitative 
characterization of genome-wide transcriptional profiles [10,11].  

More interests have been directed toward proteomics 
study because the cell functions relating to post-transcriptional 
modifications and protein interactions can’t be captured by genomics 
or transcriptomics analysis [10,12]. Proteomics quantify the 
expression of large number of intracellular proteins, so the biomarkers 
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Receptor; HER: Human Epidermal Growth Factor Receptor;  KEGG: 
Kyoto Encyclopaedia of Genes and Genomes; mAb: Monoclonal 
Antibody; NSCLC: Non-Small-Cell Lung Cancer;  PKM2: Oncofetal 
M2 Isoform of Pyruvate Kinase; RNAi: RNA Interference; VEGF: 
Vascular Endothelial Growth Factor.

Introduction 
Cancer is a complex invasive genetic disease that causes a 

significant mortality worldwide. The American Cancer Society 
predicts that the total number of cancer patients will continue 
increasing steady, with approximately 1,660,290 new cancer cases 
diagnosed and about 580,350 deaths happened in 2013 in the 
United States. Cancer is characterized by various hallmarks, such as 
abnormal cell growth, enhanced proliferation, reduced apoptosis, 
angiogenesis, shifted metabolic activity, etc [1-3]. Although the 
detailed mechanisms remain to be determined, it is well appreciated 
that the incidence of cancer is associated with the mutual interactions 
of genetic mutations (e.g., single nucleotide change and germ line 
copy number change) and environmental toxins (e.g., infectious 
agents, chemicals, X-rays, UV, smoking, high calorie, and high salt 
intake) [4]. To effectively treat cancer, it is essential to uncover the 
biological functions of genes, proteins and metabolites underlying 
the autonomous tumor cell growth. The high-throughput and 
high-resolution Omics technologies have been proved as efficient 
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specifically expressed in the transformed cells can be identified from 
the global proteome profiling [13]. Various analytical tools have been 
developed for proteomics study including: 1) SELDI-TOF-MS is used 
to directly analyze protein mass without enzymatic digestion [14,15]; 
2) UPLC-MS/MS is applied to analyze the whole protein repertoire of 
the samples partially digested; and 3) MALDI-TOF-MS enables the 
sub-femtomole resolution of compound detection [16-18]. 

Metabolomics is a qualitative and quantitative approach for the 
analysis of cellular metabolites using HPLC, GC-MS and/or LC-MS/
MS. The integration of intracellular and extracellular metabolism 
analysis offers the dynamic profiling of the overall outcome of 
cellular metabolism, genome control, and enzyme regulation [14,19]. 
Therefore, the metabolic biomarkers identified from metabolic 
profiling can support cancer diagnosis and cancer treatment [20]. 

Omics have provided powerful analytical tools that generate 
big data. The applications of Omics data sets in targeted anticancer 
biopharmaceuticals development include, but not limited to, key 
information extraction from public databases, cancer biomarker 
identification for diagnosis and therapy, targeted cancer therapies 
development by regulating the suitable targets, and expression of 
drugs with high clinical efficiency. As shown in Figure 1, we will first 
overview the application of Omics in discovering the single molecular 
and network cancer biomarkers; then discuss the development 
of targeted cancer therapy, biopharmaceutical, and personalized 
medicine facilitated with Omics technologies; and finally present the 
potential to apply CHOnomics in Chinese hamster ovary (CHO) cell-
based therapeutic proteins production, thereby improving the clinical 
utilization.         

Omics in Cancer Biomarker Identification 
Intensive research showed that the malignance transformation 

of cancer is caused by the mutations of oncogene and tumor 
suppressor genes. Most cancers are signalled by molecular, pathway, 
and network markers. These biomarkers indicate the diseased 
cells, tissues, or individuals, so the investigation of biomarkers can 

benefit cancer diagnosis, prognosis, patient response prediction, and 
therapy development. The challenge in discovering biomarker is the 
lack of a complete understanding of cancer development. The high-
throughput Omics technologies have generated a large amount of 
global molecular profiling, which opens the door to study the driving 
mechanism of cancer. 

Single molecular biomarker

Single molecular biomarkers include gene, mRNA, miRNA, 
protein, glycan, and metabolite, which are caused by gene mutations, 
transcription modifications and translation or post-translational 
modifications. Several Omics databases are available for single 
molecular biomarker study [12,21,22], including Entrez gene and 
Mouse Genome Databases for gene annotation [21,23], Unipart  for 
protein annotation [24-26], and Gene Oncology annotation [27-29]. 
In addition, several Omics data analysis tools have been developed to 
map gene, mRNA or metabolite to biological protein, such as UniProt 
Knowledgebase [30,31], iProClass [32,33], Protein Information 
Resource [34], DAVID gene ID conversion tool [35], and Protein 
Identifier Cross-Reference [5,36,37]. 

The functional profiling of annotated genes and proteins has 
been successfully used to identify biomarkers of breast cancer, lung 
cancer, prostate cancer and other cancers. Previous breast cancer 
research showed that estrogen receptor α is an estrogen-inducible 
transcription factor, and its dysfunction accounts for the majority 
(70%) of breast tumor [12]. Human epidermal growth factor 
receptor 2 (HER2), a tyrosine kinase receptor, is over expressed 
in approximately 15-25% of breast cancer patients. A proteolytic 
fragment of α-antitrypsin has also been identified as a diagnostic and 
prognostic marker of breast cancer [21,38,39]. It is reported that the 
tumor suppressor proteins play a key role in DNA repair through the 
homologous recombination mechanism [14,40,41], so the germline 
mutations of breast cancer repressor genes (i.e. BRCA1 and BRCA2) 
are the fundamental defects in hereditary breast cancer and ovarian 
cancer. For lung cancer patients, the gain of chromosome 5p occurs 
in a high number (60%). Other alteration genes that are frequently 
involved in lung cancer are EGFR/HER1 and KRAS [42,43]. The 
proteomics analysis has indicated that pyrophosphatase 2 and 
Ezrin are the potential markers of metastatic prostate cancer [44]. 
In addition to functional genomics, epigenetics has been used to 
evaluate the aberration of DNA methylation in cancer cells. Jones and 
Baylin have observed the global and locus-specific (e.g., CpG island-
rich promoters) hypomethylation in abnormal methylation of cancer 
cells [45,46]. Another study reported that PITX2 DNA methylation 
is an epigenetic marker to predict adjuvant tamoxifen therapy in the 
treatment of early stage cancer [47]. 

Network biomarker 

Another classification of biomarker is network-based regulator 
(i.e. panel biomarker), such as cell signalling, biological pathway, 
and gene regulating network. The multiple network databases, e.g., 
Kyoto Encyclopaedia of Genes and Genomes (KEGG) [48], Pathway 
Interaction Database [49], and Pathway Commons [1,49,50], have 
been established for metabolic pathway and signalling pathway 
analysis. Mapping experimental data to network pathways is a 
key step in the functional interpretation of Omics data, which has 
been achieved by utilizing the systems of pathway analysis, such as 
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Figure 1: The application of Omics technologies in the development of 
anticancer biopharmaceuticals.
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Ingenuity IPA and Gene GO Meta Core [51]. Additional datasets, 
such as Intact and Molecular Interaction, have been built for protein-
protein interaction annotation to reveal cancer classification and 
indicate the mutation genes [52,53]. 

Some network biomarkers in various leading cancers have been 
discovered using cancer Omics. For instance, genomics studies have 
shown that: (i) the switcher between proliferation and differentiation 
occurs in the cellular networks of breast cancers [54]; (ii) twelve 
core signalling pathways alter in human pancreatic cancers [55]; 
(iii) the dysregulation of the transforming growth factor β plays 
a key role in epithelial ovarian cancers [56]; and (iv) Some cancer 
cells exhibit defective genetic-epigenetic networks in different parts 
of tumor tissues [57,58]. The proteomics study of breast and lung 
cancers showed that the co-activation of multiple receptor tyrosine 
kinases sustains cell proliferation in glioblastoma multiforme, 
indicating the importance of targeting multiple receptor tyrosine 
kinases [42,59,60]. In addition, the functional proteins can interfere 
with various signalling cascades, so the aberrant post-translational 
modification of regulating proteins in a network plays a critical role 
in the concogenesis of various malignancies. 

All above progresses in network biomarker studies are attributed 
to the rapid advancement of systems biology that has accumulated 
a large amount of Omics data. Although various bioinformatics 
tools have been developed to facilitate functional analysis and data 
interpretation, it is still challengeable to extract key information 
from the big data. To solve this issue, various statistical frameworks, 
computational and mathematical formulas, and genome-scale 
models have been applied to infer cellular network [61-64]. For 
example, Alberghina et al. investigated the enhanced glycolysis and 
mitochondrial metabolic remodelling of cancer cells and identified 
multiple pathway biomarkers [65]. They characterized four basic 
cancer properties using the developed model, including enhanced 
cell proliferation, evasion from apoptosis, genomics instability, 
and instability of cancer cells to enter senescence, based on their 
modelling work.

MicroRNA 

The microRNA (miRNAs), derived from non-coding primary 
messenger RNAs (mRNAs), are single-stranded RNAs of 
approximately 22 nucleotides in length [66]. The miRNAs bind 
to the complementary sequence of targeted gene and repress 
targeted mRNA through direct cleavage or translational repression. 
Therefore, the deregulation of miRNAs affects both gene expression 
and metabolic activity involved in cancer pathogenesis. Eventually, 
the identified predictive or prognostic miRNA signatures can 
be clinically translated to diagnose cancer disease. Over the last 
decade, the advanced next-generation sequencing technology and 
the accumulated transcriptomics knowledge have been utilized for 
effective and quantitative analysis of both mRNA and miRNA. For 
example, studies have found that miR-10b, miR-15, miR-16, and miR-
20 are anti-angiogenic miRNAs that target the mRNA of epidermal 
growth factor receptor (EGFR) [67,68]. In other studies, miR-500 
has been identified as a potential diagnostic marker of hepatic cell 
carcinoma [21,69]. 

Taken together, Omics technologies have enabled the 
identification of a number of predictive biomarkers that can be used 

for early cancer detection. The discovered biomarkers also spurred 
the development of targeted cancer therapies, as discussed in the 
following sections. 

Omics in Targeted Anticancer Biopharmaceuticals 
Development
Targeted therapy development 

After discovering biomarkers and understanding the mechanism 
of cancer regulation, targeting the abnormal gene, pathway or 
metabolic activity plays a critical role in cancer therapy development. 
The typical targeting strategies are discussed below.  

Target specific regulator: In cancer therapy development, it is very 
important but challengeable to target epigenetically and genetically 
abnormal molecules or pathways. The ideal targets should have the 
following features: unique to the specific cancer cell, cancer cell 
survival dependent, representative with high frequency, and feasible 
to be targeted with medicine. In traditional therapy development, 
targeting specific regulator requires complicated experimental 
design and systematic test. With the guidance of Omics, it is more 
efficient to predict the patient’s response to the targeted therapy, and, 
therefore, to define the rational targeting strategy in cancer treatment. 
One substantial target for cancer therapy is epidermal growth factor 
receptor (EGFR), a tyrosine kinase receptor, which is over expressed 
in solid tumors in lung and colorectum [14]. The non-small-cell 
lung cancer (NSCLC) harbouring EML4-ALK mutation and EGFR 
mutation can be treated with tyrosine kinase inhibitors [70,71]. 
The HER2 proto-oncogene over expressed in breast cancer is also a 
tyrosine kinase receptor that can be treated with targeted therapy [1]. 
Another ideal target is the pathway deregulated by BCR-ABL1 that 
associates with estrogen receptor expression in chronic myelogenous 
leukemia [72]. For example, the kinase inhibitor targeting BCR-ABL1 
fusion gene has been demonstrated as an efficient approach to treat 
the chronic myeloid leukemia tumor and gastrointestinal stromal 
tumor. 

Target core pathway: As previously reviewed, the global genomics 
analysis showed that a dozen core signalling pathways were deregulated 
in the progression to metastatic pancreatic cancer [1]. The Cancer 
Genome Atlas (TCGA) project has identified frequent genomic and 
epigenetic aberrations that deregulate the p53, retinoblastoma RB, 
PI3-kinase, receptor tyrosine kinase (RTK) core signally pathways 
of glioblastoma multiforme [73]. It is found that angiogenesis, a 
process of neovascular formation during carcinogenesis, is found to 
correlate with vascular endothelial growth factor (VEGF), fibroblast 
factor, Notch, transforming growth factor-β, Hedgehog, and Wnt 
signalling [4]. These findings indicate that it might be promising to 
treat cancer by targeting the deregulated core pathways regardless of 
the progression mechanisms of metastatic cancer. The development 
of common therapeutic approach by targeting core pathway relies on 
the integration of multi-level Omics analysis. For example, various 
powerful Omics data analysis tools, including KEGG, Pathway 
Commons, Ingenuity, and Pathway Recognition Algorithm using 
Data Integration on Genomic Models, have been developed [74]. It is 
worthy to point out that some regulatory pathways (e.g., MYC, KRAS 
and TP53) are remarkably resistant to therapeutic interventions due 
to genetic instability [61]. So, it is critical to develop a second line 
therapy to counteract the recurrent disease and improve the clinical 
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efficiency of cancer therapy. 

Regulate glycolysis: Warburg effect is referred as the phenomenon 
that the high rate of aerobic glycolysis followed by anaerobic 
respiration producing lactic acid dominates the energy production 
in malignant tumor. Glycolysis is an important metabolic process 
that provides carbon and energy to maintain cell growth and cellular 
function. Multiple Omics studies show that the glycolysis in cancer 
cells is abnormal [10,61], so it will be effective to target glycolysis. As 
the terminal enzyme of glycolysis, pyruvate kinase is the key regulator 
that determines cellular energy level, redox homeostasis, and cell 
proliferation. A strong correlation between transcriptional activation 
of oncofetal M2 isoform of pyruvate kinase (PKM2) and cancer 
metabolism has been reported [75]. PKM2 switches metabolism 
to lactate fermentation and promotes tumorigenesis. Most PKM2 
positive cancer cells are signalled by epidermal growth factor 
receptor (EGFR) at the early-stage of cancer development. Therefore, 
regulating PKM2 is essential to control cancer cell proliferation. The 
activity of PKM2 is tightly regulated and controlled at multiple Omics 
levels (i.e., tanscript omics, proteomics and metabolomics), which 
responds to environmental stresses or toxins. PKM2 is a specific 
metabolism hallmark of cancer cells directly controlling cancer cell 
progression, so it is recognized as an attractive target for novel cancer 
therapy development. 

Target mitochondria: Mitochondria are semi-autonomous 
organelles that generate more than 95% of cellular energy and 
control various cellular metabolic activities. Previous mitochondrial 
metabolomics study uncovered the correlation between 
tumorigenesis and multiple abnormal metabolic activities. For 
example, the production of reactive oxygen species, decreased 
oxidative phosphorylation, increased glycolysis, and deregulated 
cellular energetics are considered as typical metabolic biomarkers of 
cancer cells [10]. The mitochondrial genomics analysis showed that 
the D-loop (a common mtgenome mutation) is an excellent signature 
for early detection of solid tumours. All these exciting findings have 
increased the enthusiasm for designing or identifying novel cancer 
therapeutic agents directly targeting mitochondria. As Verschoor 
et al. reviewed, the numerous mitochondrial databases, including 
MitoInteractiome, MitoP2, HMPDb, and MitoMiner, provide the 
platforms for new therapy development [76].

Screen small molecule drug: The leading small molecule drug 
compounds for pre-clinical studies can be screened by integrating 
transcriptomics data, toxic genomics data, and computational 
approach [77]. The available drug databases include Drug Bank 

[78,79], KEGG, NCBI Pub hem, Connectivity Map [80,81], and 
Comparative Toxic genomics Database [82,83]. The Omics-based 
drug screening can overcome the disadvantages (i.e., expensive, time 
consuming and laborious) of traditional in vivo animal experiments 
and in vitro drug screening. 

Targeted anticancer biopharmaceuticals development 
The public NIH Roadmap Epigenomics Mapping Consortium 

and the Personal Genome Project aim to create human genome 
maps integrated with highly comprehensive phenotype data [42]. 
The systems biology knowledge can provide insights into cancer 
cause and, therefore, guide the development of novel therapies. 
Scientists and clinicians are dedicated to providing the highest life 
quality for patients diagnosed with cancer by improving prevention, 
diagnosis and survivorship. Developing novel biopharmaceuticals 
and increasing the clinical efficiency of various therapeutic proteins 
represent an efficient way in cancer therapy.

The ever-increasing efficiency of cancer genomics has accelerated 
the development of targeted anticancer therapeutic biomedicines. 
Biopharmaceuticals represent a significant amount of targeted 
therapeutics, including monoclonal antibody (mAb), recombinant 
therapeutic protein, and nucleic acid-based biomedicine [84]. More 
than one hundred biopharmaceuticals have been approved by the 
FDA and are available on the market. Several dozen of pathway-
targeted drugs have been applied for clinical treatment of breast, 
ovarian, colon, and other cancers. In addition, thousands of pipeline 
biopharmaceuticals are in the clinical trial stage. 

mAb targets specific receptors of tumor cells to mediate 
cytotoxicity via antibody dependent cell cytotoxicity or complement 
dependent cytotoxicity. Table 1 highlights some mAbs for cancer 
treatment on market. Breast cancer is the second leading cause of 
death among women, which kills nearly 40,000 Americans in 2011, 
and an estimated 300,000 new cases of breast cancer are expected to 
be diagnosed each year [85]. The monoclonal antibody Trastuzumab 
(Brand name: Herceptin) developed by Genentech is the first 
commercially available biopharmaceutical to target HER2. It has been 
proved that humanized Trastuzumab improves the survival rate of 
breast cancer patients by interfering the concogenes to which cancer 
cells addict [5]. The fusion protein MM-302 is a therapeutic protein 
candidate for HER2 positive breast tumor under clinical evaluation 
[14]. The patients with colorectal cancer, the fourth leading cancer 
death, can be treated by inhibiting VEGF receptor using chimeric 
antibody Cetuximab (Erbitux, products of Bristol-Myers-Squibb, 
Merck and ImClone systems) [86]. Other cancers, such as head 

Name /
Brand name Description Company Cancer treated

Bevacizumab /
Avastin Inhibit VEGF, humanized mAb Genentech (Roche) Colorectal cancer, non-small-cell lung cancer, breast cancer, 

glioblastoma, kidney cancer

Cetuximab / Erbitux Inhibit EGFR, chimeric mAb Bristol-Myers-Squibb, Merck and 
ImClone systems

EGFR expressing metastatic colorectal cancer, head cancer 
and neck cancer

Etanercept / Enbrel Inhibit tumor necrosis factor, 
fusion protein Amgen Target tumor necrosis factor

Panitumumab / Vectibix Inhibit EGFR, humanized mAb Amgen & Pfizer Metastatic colorectal cancer

Rituximab / Rituxan Anti-CD20 IgG1, chimeric mAb Biogen Idec Leukemia, transplant rejection, and autoimmune disorders
Trastuzumab / 

Herceptin Anti-Her 2, humanized mAb Genentech (Roche) Metastatic breast cancer

Table 1: Example of therapeutic proteins for cancer treatment on US market.
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and neck cancers, can be treated by Cetuximab. The human mAb, 
Bevacizumab (Avastin) developed by Genentech, has been approved 
for clinical use in treating metastatic colorectal cancer by inhibiting 
VEGF. Also, Bevacizumab is used in the clinical treatment of NSCLC, 
breast cancer, ovarian cancer, and kidney cancer [4]. The anti-EGFR 
receptor therapeutic protein, Panitumumab (Vectibix), has been 
developed by Amgen and Pfizer to treat colorectal cancer.  

It has been reported that some small molecules can promote 
the apoptosis of tumour cells by targeting the receptor signalling 
pathways or inhibiting intracellular enzymatic activity. For example, 
the echinoderm microtubule-associated protein-like 4-anaplastic 
lymphoma kinase was identified as a fusion type driver oncoprotein 
in about 5% of small cell lung cancer [87]. The Crizotinib (Xalkori), 
ATP-competitive small molecule ALK inhibitor, has been approved 
to treat NSCLC patients. The poly-ADP-ribose polymerase 1 
inhibitor, i.e. Iniparib, developed to treat breast and ovarian cancer 
patients with BRCA 1/2 aberrations, is currently under Phase III 
clinical evaluations.

Personalized medicine
The traditional anticancer biopharmaceuticals are used for all 

cancer patients without considering the heterogeneity of individual 
patient’s genetic information, thereby often resulting in some adverse 
effects. Therefore, the interest in developing individual therapy by 
performing personal cancer Omics profiling is recently increasing. 
The principle to define a suitable rational anticancer strategy is to 
investigate the patient cancer samples by integrating disease risk 
assessment, driver factor diagnosis, patient response to cancer drugs, 
individual habits, and clinical history [14,88]. It is critical to identify 
the altered genes and pathways in patient tumour cells and, therefore, 
elucidate the particular oncogenic roles. 

In personalized therapy development, patients are monitored 
regularly; individual genetic disease risks are assessed; and personal 
profiles are collected, assembled and integrated. Specifically, the 
genome alterations, such as point mutation, insertion, deletion, 
copy number alteration, and structural differences [89], have been 
discovered using next-generation sequencing technology. The 
oncogene or oncoprotein can be identified by investigating a vast 
amount of high-resolution personal Omics profiling. The global 
human protein map launched by Human Proteome Organization 
enables the discovery of protein signalling marker. The advances 
in Omics can guide the rational design of personalized antitumor 
therapies, particularly the tumour cells caused by the well-known 
genetic instability. 

The targeted therapies have been successfully developed and some 
examples are listed here: 1) Imatinib Mesylate (Gleevec) inhibiting 
Ab1 kinase for the control of chronic myelogenous leukemia caused 
by philadelphia chromosome [42]; 2) Trastuzumab, a targeted 
therapeutic protein, for breast cancer caused by the amplification of 
HER2 and the resultant aberrant phosphorylation (predominance 
of receptor tyrosine kinase) [90]; 3) Dabrafenib (Tafinlar) for the 
treatment of melanoma caused by BRAF mutation V600E [91]; 4) 
Epiregulin, COX2 and MMP1&2 for the treatment of lung metastases 
[42]. With the high scale Omics analysis, the cancer patients can 
be profiled in timely manner and treated with specifically designed 
therapy. The personalized medicine is especially crucial to deal with 

rare genetic or complex cancer disease. Taken together, the design 
of efficient individual medicine has great potential in future cancer 
therapy development.

Omics in Anticancer Therapeutic Protein Production 
CHO cells have been widely utilized in biopharmaceutical 

industry to produce cancer therapeutic proteins, such as mAbs and 
recombinant proteins. It is estimated that over 70% of therapeutic 
proteins in global market are produced using CHO cells. The 
continuing increase of the market of mammalian cell-derived 
biopharmaceuticals requires a highly efficient bio processing platform. 
The recent advances in CHOnomics technologies (i.e. Omics in CHO 
cell) allow for the rational design of the specific bioprocess, such as 
host cell engineering, cell line development, and production process 
development, to produce CHO-based therapeutic proteins. 

Cell engineering to express anticancer biopharmaceuticals 

With the developed CHO genomics knowledge, it is feasible to 
regulate the expression of anticancer biopharmaceuticals to improve 
protein productivity and manipulate post-translational modification 
through host cell engineering. The typical dosage of antibody for 
cancer patients is to maintain serum concentration over 10 µg/ 
mL, i.e. estimated weekly dosage of several hundred million grams 
[92]. The increased patient number and high dose requirement 
for therapeutic protein have driven the process development of 
mammalian cell culture to reach high-level protein production [93]. 
As shown in functional genomics studies, protein productivity can be 
improved by manipulating regulators involved in unfolded protein 
response and secretion bottleneck, such as X-boxing binding protein 
1, activating transcription factor, N-ethylmaleimide-sensitive factor 
attachment protein receptors, and ceramide-transfer protein [94-96]. 
Additionally, direct metabolic engineering guided approaches have 
been applied to achieve desired cell phenotypes [97-99]. For example, 
CHO DG44 has been developed by deleting the dihydrofolate 
reductase gene to metabolically select the expression of a desired 
heterogeneous gene. Multiple commercialized biopharmaceuticals 
are produced by the metabolically engineered CHO DG44 cells.

Post-translational modification

The enhanced bioactivity anticancer therapeutic protein with 
proper post-translational modifications directly contributes to cancer 
therapy by improving clinical efficiency. Of all post-translational 
modifications, galactosylation, sialylation and fucosylation are the 
most extensively evaluated ones [100,101]. CHO genomics analysis 
has been performed to evaluate the genes or regulators involved 
in metabolic pathways of post-translational modification [102]. 
The transcriptomics maps and proteomics profiling of multiple 
cell lines have been collected in CHOnomics studies, generating a 
couple of CHO cell engineering targets. For example, the N-linked 
oligosaccharide structures synthesized by over expressing the β1, 
4-glycosyltransferases have resulted in greater homogeneity. The 
over expression of α2, 3-sialyltransferase has produced significantly 
increased sialylation branches [103-105]. 

Cell line development

In addition to direct cell engineering, the construction of high 
anticancer biopharmaceutical producing cell lines can significantly 
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increase the productivity of a therapeutic protein. The CHO proteomics 
study showed that the expression of chaperones and cytoskeletal 
proteins correlates with the high production of mAb [106]. Both 
the stability and productivity of a therapeutic protein are affected by 
the insertion location of heterogeneous genes. CHOnomics studies 
discovered site-specific integration elements, cis-acting elements, 
and multiple regulators for stable cell line development, including 
scaffold/matrix attachment regions, insulators, ant repressor 
elements, and ubiquitous chromatin opening elements [107]. 

Anticancer biopharmaceutical production process

Rational process development through CHOnomics investigation 
is a promising strategy to improve the productivity and control 
the quality of targeted anticancer biopharmaceuticals. The rational 
design of a specific production process is based on cell response to 
process parameters and extracellular metabolites. For example, the 
CHO metabolomics and proteomics analysis provides the in-depth 
understanding of cell growth and biopharmaceutical expression. 
The obtained Omics knowledge of CHO cell culture can guide the 
development of fed-batch process and lead to high-titer and high-
yield biopharmaceutical production. The effects of production 
conditions can be optimized [108] because the intracellular and 
extracellular metabolite profiling collected in metabolomics study 
enables one to identify the critical process operation parameter [109]. 
Additionally, Omics analysis of bio processing is an effective tool 
to direct the scale-up of mammalian cell culture while maintaining 
consistent cell culture profiling and protein production [110]. 

Conclusion and Perspective 
Cancer Omics have improved the understanding of cancer driving 

mechanism. The accumulated knowledge allows for distinguishing the 
key molecular events, such as gene mutation and cellular pathway. The 
identification of cancer biomarkers contributes to clinical diagnosis, 
prognosis and treatment of cancer. The deciphering of cancer driving 
biological events finally leads to the specific design of targeted 
cancer therapies, anticancer biopharmaceuticals, and personalized 
medicines. The advanced CHOnomics provide whole cell profiling 
and genome-scale understanding of cell culture to improve the bio 
processing efficiency of therapeutic proteins. Take together all the 
effective achievements in Omics technologies will benefit cancer 
diagnosis, new therapy development, biopharmaceutical production, 
and cancer treatment, which will extend the lives of millions of 
patients in cancer treatment.
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