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Abstract

Sound waves are a prime component making up the environment, and 
they are present in almost all niches on the planet. In times of increasing noise 
pollution, the effect of sound stress on humans, animals, and microorganisms is 
well known. However, the possibility of this kind of pressure in the environment, 
affecting pathogenic fungi, which live in the background as saprophytes, has 
not been explored. Fungi can develop attributes and become virulent due to 
adaptation to selective pressure or stress. In this context, our group has become 
interested in evaluating the impact of sound stress on the fungus Cryptococcus 
neoformans, a pathogen that has high phenotypic plasticity. C. neoformans 
strain H99 was chosen for all assays. The yeasts were cultivated at 30°C, 
exposed or not to the frequency of 8 kHz. We observed morphological changes 
in these cells, such as the expression of phenotype virulence attributes: capsule 
expansion and melanin production. We also analyzed the number of viable cells 
after exposure, and we observed the yeast’s susceptibility to antifungals. After 
the treatment with 8 kHz, the cells showed a significant increase in the capsule 
expansion, an acceleration of the melanin production, and a slight reduction in 
the number of viable cells. Finally, tests performed with the antifungals showed 
a decrease in inhibition halo on the plate test. Our results are innovative and 
suggest that stress caused by sound could incite increased virulence in this 
fungus.

Keywords: Cryptococcus neoformans, Sound frequency, Virulence 
Attributes, Stressor environment, Phenotypic Plasticity.

Introduction
Sound is mechanical energy that disperses in the form of waves, 

an intrinsic component of the environment [1,2]. From a human 
perspective, the sound frequencies can be divided into roughly three 
groups: infrasound (< 20 Hz), audible sound (20 to 20,000 Hz), and 
ultrasound > 20,000 Hz) [3].

Essentially, all life on the planet interacts with sound waves [4,5]. 
These interactions can be classified into two groups: 1- Interactions 
with sound self-produced by the organisms; these intentional 
interactions are usually involved in organism communication (5), 
and 2- Interactions that are non-intentional, when the organisms are 
exposed to environmental noise. The second group can have a major 
impact on living organisms, which vary according to the frequency 
range utilized and the organism that is exposed. It has been observed 
that plants exposed to the frequencies of 1 kHz significantly increased 
cell division and cell wall fluidity [6-8].In animals, the principal 
impact is induced by the sound in the audible sound frequencies, 
causing disorientation that disturbs the ability to communicate and 
hunt, and spatial orientation [9-12].

Hypotheses about the effect of global warming-related changes 
[13], radiation[14-16]and the use of pesticides [17] performing as 
selective pressure on pathogenic fungi in the environment have been 
raised. Besides, since the industrial revolution, the amount of noise 
emitted into the environment has significantly increased, considered 
today to be a problem only exceeded by pollution of air and water, 

especially in densely populated areas with intense industrial activity 
[12,18,19].

There is some evidence that sound, as environmental noise, could 
interfere in microorganism physiology,and this knowledge has been 
explored for decades in medicine [20-22]. Microbes growing exposed 
to different sound frequencies demonstrated significant changes 
such as increased cell permeability, change in cell surface charge, the 
release of nitric acid, hydrogen, peroxidase, and free radicals [22].

The effect of sound waves on the frequency of 8 kHz was 
investigated in the E. coliK-12 bacterial model. First, the researchers 
noticed an acceleration in RNA and protein synthesis, suggesting a 
periodic oscillation of the bacterial intracellular liquid induced by 
sound stress [3,23]. In a second experiment, it was shown that sound 
could induce mechanical stress, causing an influx of small molecules 
like H2O, Na+, K+, and Ca2+ [23]. A frequency-dependent fungicidal 
activity was observed in Aspergillus sp. [24-26]. 

Fungi are ubiquitous microorganisms in nature and have essential 
functions for maintaining life on Earth. However, some species are 
highly pathogenic, which is a result of a well-adapted selection of 
survival and infection in mammalian cells. Further, with the advent of 
immunosuppression, the number of fungal infections has increased 
significantly during the last few decades, reaching an alarming 
threshold of human mortality worldwide, affecting more than a 
billion people [27,28]. Questions are raised about what would happen 
in an environment that could promote selection for fungi strains that 
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become increasingly virulent and resistant to the antifungals, and 
how this adaptation is also emerging at an exponential rate [29-31].

Some pathogenic fungi, such as Cryptococcus neoformans, present 
a saprophytic life cycle [32-34], and hypotheses discuss the ability of 
these pathogens to face environmental stresses, and how these events 
could modulate virulence factors [35-38]. These in turn could result 
in a more beneficial adaptation of these microorganisms when in the 
host’s infectious processes [38].

C. neoformans are encapsulated, polysaccharide-coated yeasts 
frequently found in the environment in association with decaying 
vegetation and are able to cause disease in humans [34,39,40]. This 
fungus can invade the Central Nervous System (CNS), causing fungal 
meningoencephalitis, which is the most common cause of meningitis 
in adults living with HIV in sub-Saharan Africa [41-43]. The global 
incidence of cryptococcal meningitis was recently estimated at 
approximately 220,000 per year [42]. The mortality for those receiving 
care was estimated at 60% in low-income countries [42,44]. People 
with compromised immune systems, especially those with AIDS and 
organ transplants are more susceptible to Cryptococcus infections 
[45-47]. In addition to its clinical importance, this fungal pathogen 
displays remarkable phenotypic plasticity in response to host and 
environment [36,48].

C. neoformans infects a wide range of organisms, from amoebas 
to insects (Lepidoptera) and plants such as Arabidopsis thaliana[49]. 
Hypotheses about the effect of global warming-related changes [13], 
radiation [14-16] and use of pesticides [17] could play a role as a 
form of selective pressure upon pathogenic fungi in the environment. 
In a broad view of the types of environmental stresses that would 
act as selective pressure, it is worth noting that since the industrial 
revolution, the amount of noise emitted into the environment has 
significantly increased. It is considered today as a problem on the 
scale of pollution of air and water, especially in densely populated 
areas with intense industrial activity [12,18,19].

In the face of this new concern about the role of sound/vibration 
in the environment, Biotremologyhas arisen as a new science.
Biotremology is an emergent discipline that studies the production, 
transmission, reception, and biological effects of vibrations in a living 
organism [50,51]. The findings of this new science support studies 
in several domains, from animal communication to use in growth 
and pest control [52,53]. In this innovative vision, we investigate 
the effect of background noise as a source of substrate vibrations on 
the virulence attributes of the pathogen C. neoformans. The sound 
frequency of 2 and 8 kHz were evaluated on yeast growth, expansion 
of the polysaccharide capsule, melanin production, and susceptibility 
to fluconazole. Our data imply that sound can exert selective 
pressure on the environment, stimulating micro-organism virulence 
phenotypes.

Materials and Methods
Yeast strains and growth conditions 

In our assays, we used the species Cryptococcus 
neoformansvargrubii, a well-established pathogenic strain, H99, a 
widely known virulent strain, with its entire genome sequenced [54]. 
Fungal strains were stored in 15% glycerol at -80ºC until use. The cells 
were grown in YPD broth (yeast extract [2%], peptone [1%], dextrose 

[2%]) at 30ºC and isolated in the log-phase of microbial growth for 
further testing.

Background Sound playback
A loudspeaker (of low-frequency response, 8Ω impedance, 

membrane diameter 10 cm, Radioshack, Taiwan)was usedfor the 
emission of the sound waves. Over the speaker was placed a 15 cm 
acrylic plate, on which the Petri dishes with fungal strains were 
arranged, produced as described in the previous section, were placed. 
With this setup, the sound was transmitted as a substrate vibration of 
the acrylic plate to the Petri dishes.

For the experiments, the complete setup was introduced in 
a cultivation oven that maintained the temperature at 30ºC and 
alsoacted as an isolation sound chamber.

Two simulation programs were built, using the function 
synthesis of the software Sound Forge 6.0 software (Sonic Foundry 
Inc., Madison, WI, U.S.A.). The programs consisted of digital 
pure tone continuous sequences of 2 or 8 kHz frequencies built in 
monophonic mode at 24-bit, 96-kHz, 80-dB signal-to-noise ratio. The 
stimulation program was played back without interruptions (looping 
reproduction mode of the Sound Forge software) during all duration 
periods of the experiments, using a computer connected to a sound 
card (UA-25EX, Edirol-Roland 24bits-96kHz; RolandCorp., Japan) 
which the loudspeaker was plugged into.

The measure of air sound intensity was assessed by a digital 
decibelimeter (minipa Model MSL-1355b, SPS, Brazil) connected 
to a computer and placed in the middle of the cultivation oven. 
Vibrations transmitted to the acrylic plate were recorded by a laser 
vibrometer (PDV-100, Polytec, Waldbronn, Germany). The beam 
of the vibrometer was directed perpendicularly to different points 
of the acrylic plate and the equipment was placed at a distance of 
~30 cm from the vibration surface. To get a better reflection, a small 
piece of reflective tape was glued on the recording points. Registered 
signals were amplified and digitized (monophonic mode, 24-bit, 
96-kHz, 100-dB signal-to-noise ratio),via the audio capture sound 
card described above, and computer-stored using Cool Edit Pro 2.0 
software (Adobe Systems Inc., San Jose, CA, U.S.A.).

Airborne sound intensity inside the cultivation oven was 57.6 
dB. The air pressure generated by the loudspeaker membrane was 
transmitted efficiently to the acrylic plate and to the Petri dish, 
Vibration generated by the air pressure varied between -1 and -21 dB, 
in relation to the intensity measured in the loudspeaker membrane 
(-50 dB) (Supplementary Figure 1).

Melanin production
Melanin production was assessed by inoculation of the cells in 

a chemically defined minimal medium (15 mM dextrose, 10 mM 
MgSO4, 29.4 mM KH2PO4, 13 mM glycine and 3 µM thiamine, 
supplemented with 1 mM L-DOPA (Sigma-Aldrich), Agar [1,5 %], 
pH 5.5) and incubated at 30ºC. The daily evaluation was qualitative, 
classified only by the presence or absence of pigmentation of the 
colonies [36,55].

Capsule induction 
To induce the capsule formation, yeast cells grown in YPD 

were washed 3 times with 1X Phosphate Saline Buffer Sterile (PBS) 

https://paperpile.com/c/hW4wZX/7g70K
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and the density was adjusted to 108 cells/mL. A 10µL-aliquot of 
yeast suspension was plated onto the five points of the Petri dishes 
containing a chemically defined minimal medium (15 mM dextrose, 
10 mM MgSO4, 29.3 mM KH2PO4, 13 mM glycine and 3 mM 
thiamine, Agar [1.5%], pH5.5). After this, the plates were incubatedat 
30ºC, with no shaking. The control group was incubated without 
any frequency, and the test group was incubated under the 8 kHz 
frequency. Each day, colonies were scraped peripherally, and this 
scraping was transferred to a slide and stained for visualization and 
measurement of the capsule expansion.

India Ink staining and light microscopy analyses
For the capsule size measurement, 10 µL of induced yeast cells were 

mixed with an India Ink drop (Becton Dickinson, NJ) and observed 
under the light microscope (Axiovert 100) at a magnification of 35 x. 
At least 4 different fields were randomly chosen and photographed. 
To calculate the capsule size, the whole-cell diameter (yeast cell + 
capsule) and the cell body diameter (limited by the cell wall) were 
measured by the Axion VS 40 x 64 V 4.8.3.0 software (Carl Zeiss 

MicroImaging). Capsule thickness was defined as the difference 
between the whole cell diameter and the cell body diameter. For 
each observation, at least 50 cells were measured. The assays were 
performed in duplicate.

Cell viability assay
This was performed by counting Colony-forming Units (CFU) 

in order to evaluate the number of viable cells after the four days of 8 
kHz treatment. After four days, the whole colony was removed from 
the plate and placed in 20 mL of sterile saline (0.9%). Next, the cells 
were homogenized and a dilution of 1:104 made. With the aid of a 
sterile Drigalski handle, 100 µL of cell suspension was scattered on the 
YPD plate. The plates were incubated in the oven for 48 h, at 30ºC ± 
2, and at the end of this period, a cell number was counted. Previous 
studies testing sound frequency effects on Aspergillus sp. and E. coli 
K-12 demonstrated that frequencies lower than 5 kHz (Aspergillus) 
and 8 kHz (E. coli) could safely be appliedto microorganisms without 
leading to cell death. (20,21) From this observation, we decided to test 
the frequency of 2 kHz and 8 kHz in C. neoformans.

Figure 1: Schematic sound wave load apparatus. Sound wave apparatus adapted to an oven to produce an environmental sound stress.

Figure 2: C. neoformans melanization is accelerated by 8 kHz frequency. C. neoformans strain H99 cells were grown overnight and washed 3 times, and 106 
yeast were spotted on a solid minimal medium supplemented with L-DOPA. The colonies were followed visually for melanin production for 4 days. We observed that 
in cultures treated with 8 kHz frequency, the acceleration of the darkening was remarkable from the first 24 hours (A) and lasted until the plateau at day 4 (B-D). 
The control in MM started to show an evident pigment from day 2 (F-H). 
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Antifungal susceptibility
Two antifungals, Fluconazole and Amphotericin B, were used 

in this assay, both of which are clinical antifungal treatments for 
cryptococcosis[56,57]. We applied the disk diffusion technique on 
Sabouraud agar, with a disk positioned in the center of the Petri dish 
and containing 20 μL of fluconazole prepared with 2mg/mL, or the 
antifungal disk immersed in Amphotericin B (250 μg/mL). The yeast 
cell density spread on the plate was set at between 0.5 and 1.0 on the 
McFarland scale.

Statistical analysis
Data are expressed as means of at least triplicate samples. 

Statistical analysis was performed by using GraphPad Prism version 
7.0 for Mac (GraphPad Software). All tests were conducted at a 
significance level of p<0.05. Normality assumptions were verified 
applying the Shapiro-Wilktest. The Student test was applied when 
two groups were compared, the control wild-type versus test groups. 
The 95% confidence interval was determined for all the experiments.

Results
The effects of sound-wave stimulation on virulence-
associated phenotypes

The treatment performed with the frequency of 8 kHz 

demonstrated an acceleration in melanization within the first 24 
hours of growth, comparing the control group and the test group, 
given the darkening of the test colonies (Figure 2). The darkening 
of the fungal spots is directly related to the melanin accumulation 
produced by fungal cells. This acceleration of the darkening was more 
visible on the first two days of growth; after that, the colonies reach 
the plateau of melanization, and it became impossible to notice any 
further darkening between the groups (Figure 2).

The 2 kHz frequency displayed inverse results, with the test group 
demonstrating a slower melanization than that presented by the 
control group, with the darkening of the test group colonies noticeable 
only on the third day (Supplementary Figure 2). Importantly, even 
after four days of growth under 2 kHz, the darkening of the test cells 
was reduced when compared to the control cells.

The effect of sound frequency on the capsule size
Since only the 8 kHz was able to affect melanin production, 

we decided to investigate this frequency using other virulence 
phenotypes. The capsule is frequently mentioned as the main C. 
neoformans virulence factor [48,58-61], and in situations of cellular 
stress, the fungus expands its capsule [62,63].

Accordingly, we decided to investigate if the 8 kHz sound 

Figure 3: Analysis of the effect of sound frequency on C. neoformans capsule expansion. Capsule sizes, bodies, and total cell diameters of C. neoformans 
H99 cells were determined by light microscopy under India ink staining. Daily yeast samples were taken from colonies grown on the test and control plates. The 
global averages of daily analysis are represented in the graphs. C + C (Cell + Capsule), Cell (only cell body, without capsule), capsule (only Capsule, without cell 
body). The boxes represent 75 percent of the data distribution; the horizontal lines represent the means. The bars indicate the maximum and minimum values. 
Statistical tests: t student.
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frequency could cause stress that would lead to the capsule expansion. 
The average capsule size was measured daily throughout the growth 
period, with the recovered values   being plotted in graphs presented 
in Figure 3. It was observed that the group submitted to sound 
treatment showed a larger average size of both cell body and capsule 
(C+C 8 kHz) compared to the control group (C+C control) (Figure 
3A). When we analyzed only the cell body, we observed an increasein 
the size of the test group (Cell 8 kHz), measuring approximately 10 to 
15 micrometers compared to control (Figure 3B). Analyzing only the 
capsule ((C+C) - (Cell), we also observed a significant increase in the 
capsule expansion, with relatively higher valuesin the group exposed 
to 8 kHz frequency (Figure 3C).

Cell viability and 8 kHz interaction
Due to the observations of the sound effect on theC. neoformans 

virulence factors, we decided to investigate whether the 8 kHz 

frequency would interfere with cell viability. The CFU test was 
carried out at the end of the tests, after four days of exposure to sound 
frequency. The entire colonies were removed from the plate, and the 
cell density was adjusted with the aid of the Neubauer chamber.

CFU counts (Figure 4) demonstrated that the 8 kHz frequency 
did not affect the yeast cell’s viability. 

Antifungal susceptibility
Due to the effects caused by the frequency of 8 kHz over 

the melanin and capsule phenotypes, which are essential for the 
establishment of the disease in humans, we decided to investigate 
whether this sound stress could also interfere with resistance to 
clinical antifungals. Using the disk-plate diffusion technique, we 
evaluated the effect of the 8 kHz frequency on C. neoformans when 
subjected to the membrane-targeting antifungals Fluconazole and 
Amphotericin B.

Fluconazole (FLU) is an antifungal that interferes with the 
ergosterol biosynthetic pathway by inhibiting Erg11, an important 
component of the ergosterol biosynthesis pathway [64]. In our 
results, we observed a reduction in the size of the Flu inhibition halo, 
when yeasts were exposed to 8 Khz frequencies compared to control 
without exposure (Figure 5A and 5B). 

Amphotericin B (AMB) is a polyene antifungal that influences 
the breakdown of membranes differently from FLU. AMB removes 
ergosterol from fungal membranes [65]. Our data showed no 
difference between the AMB halo inhibition of the control and the 
test (Supplementary Figure 3).

Discussion
8 kHz sound  frequency effect on C. neoformans 
melanization

Melanin is synthesized by the fungus in order to assist the 
microorganism in its survival mechanisms, conferring some 
resistance to environmental conditions such as pH [66,67], radiation 
[14,15], high temperatures [68], oxidative stress [61], and other 

Figure 4: Analysis of cell viability after sound treatment. The CFU 
analyses were performed in triplicate using the colonies grown on the test and 
control plates. Colonies were removed with the aid of a sterile spatula and 
homogenized in 20 mL of sterile saline. Then 50 µL of the suspension was 
spread on a Petri dish with Sabouraud Agar medium and incubated at 30ºC 
for 48 h, for later counting of colony-forming units. Bars representa mean 
values and lines SE. Statistical test: t student.

Figure 5: Membrane-targeting antifungal is less active at 8 kHz sound effects. Assessing MICs and the zones of inhibition of membrane-targeting Fluconazole 
cells grown on YPD agar. Disks containing 10 μg of Fluconazole were placed over the top of the agar. Cells were incubated for 48 h at 37ºC. The 8 kHz frequency 
reduced the halo of yeast inhibition by 0.9 cm (B-1.1 cm halo) compared to control (A -2.0 cm halo).

https://paperpile.com/c/hW4wZX/fG4KE+tG22J
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stressors present in the environment in which the fungus is growing 
[69,70].

The ability to produce melanin is fundamental to the virulence 
of C. neoformans, whereas non-melanin-producing mutant strains 
significantly lose their virulence[61,66,71]. Given that melanin 
production is a protective factor against environmental stresses, we 
hypothesized that if the sound caused stress on the fungus, melanin 
production could be affected. Interestingly, our data reveal that the 2 
kHz frequency transmitted to the fungal colony as a vibration subtly 
delayed melanin production, followed by colony darkening. On the 
other hand, the 8 kHz frequency induced an acceleration in melanin 
production, and the test group became darker faster than the control 
group.

The sound frequencies generated by the frequency of 8 kHz 
upon reaching the cell most likely resulted in the excitement of 
molecules intracellularly, causing a response that accelerated melanin 
production. It is reasonable to consider that it may have been an 
increase in the expression of genes responsible for melanin synthesis, 
since a similar effect was observed in the bacteria E. coli K-12 [23], 
and in plants [8,72]. In E. coli K-12 exposed to 8 kHz, an increase was 
observedin the intracellular protein concentration and the synthesis 
of RNA, in the early treatment stages, which was in favor of cell 
division [23].

Cell population density is a crucial point for melanin production 
[73]. Hence, as an increase in cell division of E. coli treated with 8 
kHz was observed, we decided to appraise whether the effect on 
the acceleration of melanin production was due to an increase in 
population density, due to a gain in cell division. As both groups were 
inoculated with the same fungal density (108 yeast/mL), it is possible 
to discard the possibility that the control group produces melanin 
at a slower rate due to decreased fungal density. Our data on Cell-
Forming Colony Units (CFU) demonstrated that the population 
in the spots of the test group showed a slight reduction, although 

it was not statistically significant. These data suggest that there was 
no increase in population density in the group treated with 8 kHz 
compared to the control group. Therefore, the acceleration effect on 
melanin production is related to the stress caused by the sound wave 
on the expression of this virulence phenotype.

Curiously, the signals of cellular stress observed at 8 kHz 
treatment did not reproduce in yeasts treated with lower frequencies, 
such as 2 kHz. This corroborates previous studies that have indicated 
that the interactions between the sound frequencies and organisms 
vary according to the applied frequency, with some studies indicating 
that they explore the higher frequency as a prominent potential 
stressor [23].

C. neoformans cell body size and capsule expansion are 
affected by sound waves

Unicellular organisms can expand their body cell size as an 
adaptive response to unfavorable environmental conditions [74]. Gu 
et al. [23] observed that the sound intensity level of 100 dB increased 
E. coli K-12 length bymore than 27.26% [23]. Cell body size is an 
important adaptive feature with a direct influence on all physiological 
cell mechanisms, such as RNA and protein synthesis [23]In our 
analysis,C. neoformans body cell size was most affected by the sound 
waves, becoming larger than the control group cell bodies. In cell 
surface phenotypes, Pelling et al. [75] observed that theSaccharomyces 
cerevisiae cell wall exhibited periodic nanoscale motions in an 
acoustically insulated environment [75]. Here, we detected a 
significant increase in capsule expansion in the test group (8 kHz). 
The capsule, for several authors, is the most relevant C. neoformans 
virulence factor [48,58,61,76]. It gives the fungus resistance against 
environmental stressors such as dehydration [77-79] and free radicals 
[80], and despite this important role in Cryptococcus virulence [60], 
the capsule is not essential for fungal growth [76]. Nor is melanin, 
since mutant strains that do not produce these phenotypes can 
replicate normally,although they become less virulent [36,48,81,82].

Figure 6: Model for Sound stress on the main C. neoformans virulence phenotypes. Cells sense environmental stress, such as 8 kHz sound waves, and a 
signal is transmitted into the cell. The signal results in an adaptive response that requires regulation of the virulence phenotypes (acceleration in melanin production, 
increased cell body and capsule, and increased resistance to Fluconazole) as demonstrated in the scheme.

https://paperpile.com/c/hW4wZX/BG8cz
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Together, these observations corroborate the hypothesis that 
sound waves can stressC. neoformans yeast cells in the environment, 
since these phenotypes are cells’ responses to adaptive factors. These 
results reinforce the hypothesis that noise stress can also play an 
important role in triggering or even “training” the virulence factors.

8 kHz does not affect cell viability
The number of viable cells was slightly reduced after treatment, 

although without statistical significance. However, a reduction in 
the number of viable cells corroborates previous results and the 
indication that the sound frequency acts as a stressor component, and 
these results are compatible with those obtained by Karippen et al., 
with Aspergillus, indicating that the higher the frequency applied the 
higher its fungicidal potential [24]. This result suggests that the effects 
observed on the virulence phenotypes are caused by the sound wave, 
but without affecting the yeasts’ viability.

Increasing resistance to fluconazole
Antifungal resistance is becoming a significant concern for 

patients at high risk from invasive mycoses. Treatment options 
for invasive fungal infections are limited [31].Cryptococcosisis 
treated with amphotericin B, combined with fluconazole and/or 
5-flucytosine [83]. As previously mentioned in this work, in recent 
years it has been proposed that environmental pressures affect the 
virulence of Cryptococcus spp., as well as their susceptibility to clinical 
drugs [84,85].

Previous data have already shown that sound affects the membrane 
fluidity and that it increased under sound stimulation of some 
strength and frequency [86-88]. Interestingly, in our analyses testing 
antifungals that affect the plasma membrane, by different routes, we 
observed that 8 kHz sound frequency was capable of a slight increase 
in the C. neoformans fluconazole resistance, but not in Amphotericin 
B. It is very likely that the vibration caused by the cell interaction 
with the sound causes intercommunication among molecules inside 
the yeast cell. Although more examinations are required to test this 
hypothesis, it seems reasonable to consider it at this point, since the 
results of sound interaction demonstrated this effect in E. coli[24]. 
Furthermore, no effect was observed for Amphotericin B, which 
presents a mechanism related to the breakdown of membranes, more 
outside, while fluconazole acts in biosynthesis, which is inside.

Nevertheless, due to the increased expression of the virulence 
phenotypes, such as melanin and capsule, we were expecting to notice 
no sound effect upon antifungals’ interaction. We believe that the 
stress factor caused by sound waves only acts to boost the resistance 
already present in the strains, and does not confer a new resistance.

In summary, during the experiments, the presence of a possible 
interaction between the sound waves and C. neoformans virulence 
factors was noted (Figure 6). Our data are unprecedented regarding 
sound effects on virulence and adaptation of the opportunistic 
pathogen C. neoformans, a pathogen leading to the highest number 
of cases of morbidity/mortality in HIV patients. We be certain of 
that this work has pointed to a new landscape for sound frequencies 
as an intrinsic component in the environment, playing a role in 
microorganism adaptation and virulence process. This may contribute 
to extensive understanding of biological processes and possibilities 

for biomedical approaches in the future.

Conclusion
Sound can have multifaceted effects on microorganisms, and 

there may be frequencies that slow or accelerate microbial growth. 
Our data suggest that noise could act as a stressor on C. neoformans 
and may result in a gain in virulence expression. The collective forces 
of acquired virulence factors enabled this fungus to bypass and elude 
the mammalian immune response during infection, leading to the 
latency and persistence of cryptococcal infection.

After these data, our group is now interested in further 
investigating these effects, since specific sound frequencies that 
stimulate cell growth can assist in the efficiency of diagnosis using 
the cultivation of fastidious microorganisms. On the other hand, 
inhibiting growth or causing cell damage can lead to ways to prevent 
microorganisms from forming biofilms on biotic and abiotic surfaces.
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