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Abstract

Abyssinian black-and-white colobus (Colobus guereza) inhabits west, 
central, and east Africa and lives in social groups in the rain forests. Colobus 
guereza has a unique foregut digestive system similar to that of ruminants 
and absorbs organic acids, including Short-Chain Fatty Acids (SCFAs), as 
energy sources derived from microbial fermentation of plant materials in the 
gastrointestinal tract. In this study, the gastrointestinal metabolic and microbial 
features of a male Colobus guereza singly housed in a zoo were characterized, 
and each digesta from each segment of the digestive tract was collected and 
subjected to biochemical, microbiome, and metagenome analyses. In this case 
report, high levels of acetate and propionate were observed in the foregut, while 
a relatively high level of lactate was detected in the small intestine. Moreover, in 
the hindgut and the feces, acetate was dominant compared to the other SCFAs. 
SCFAs analysis indicated that Colobus guereza obtains energy via SCFAs, 
especially acetate, fermentation in the foregut and hindgut. A metagenome 
analysis revealed that each part of the digestive tract of Colobus guereza has a 
unique microbiota. Similar to ruminants, Prevotella and Selenomonas were the 
dominant genera in the foregut, which may indicate microbial fermentation of 
plant materials in the foregut of Colobus guereza.
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Introduction
Abyssinian black-and-white colobus (Colobus guereza), one of 

the major colobine monkeys, inhabits west, central, and east Africa 
and lives in social groups in the rain forests [1]. A previous study 
reported that Colobus guereza spends 52-63 % of its time resting and 
19-26 % feeding [2] and has an abnormally low basal metabolic rate, 
which may be linked to their lower activity level [3]. Moreover, they 
choose valuable food habitats and consume various plant materials, 
including leaves, seeds, and fruits, depending on their location 
and the season [4-8]. Colobus guereza consumes mainly leaves and 
fruits [2]. Therefore, they obtain their dietary energies and nutrients 
mainly from plant materials, including cellulosic fibers via a foregut-
fermentation digestive system similar to that of ruminants [9]. The 
Colobus monkey has a forestomach consisting of three regions, 
namely the cardiac gland, proper gastric and pyloric gland regions 
[10]. The cardiac gland region of the stomach is larger than the other 
regions and provides the environment for microbial fermentation 
of plant materials. Actually, microbial fermentation in the foregut 
of the colobus is similar to rumen fermentation in terms of bacterial 
counts, digestive enzymes, organic acids, and pH [11-14]. Recently, 
a metagenome analysis of the feces of the colobus was performed 
using the next-generation sequencing system [15,16]; however, the 
whole composition of their digestive microbiome is unclear. Colobus 
guereza is captured and displayed in zoos, and their care manual [17] 
provide the appropriate and practical information on the nutrients 
and feeds for zoo Colobuses based on several basic research [7,18-21]. 
However, knowledge of the microbial and metabolic features of the 
digestive tracts of zoo Colobuses is limited. In this study, we obtained 

digesta samples from the zoo Colobus guereza, which died during 
anesthesia, and elucidated the general digestive features by analyzing 
the organic acids, metabolome, and metagenome of the digesta.

Case Presentation
Animal and digesta samples

Abyssinian black-and-white colobus (Colobus guereza, male, 7 
years old) was singly reared and housed at the Kamine Zoo (Hitachi-
city, Ibaraki, Japan), and died unexpectedly during anesthesia for a 
regular health examination. After the post-mortem examination by 
the veterinarian, the complete gastrointestinal tract was removed and 
the regions were numbered (Nos.1-12) as shown in (Figure 1A); the 
digesta was collected immediately from each region and stored at -80 
ºC until analyses. Before the sampling, Colobus guereza was normally 
kept in a cage during the daytime and in the next closed bedroom 
during nighttime. The feed contents for Colobus guereza are shown 
in (Table S1). Feed was provided three times every day, and water 
was provided ad libitum. During the daytime, visitors could nearly 
approach but not directly touch the Colobus guereza in the cage.

Organic acid analysis using ion-exclusion HPLC
Organic acid concentrations in the digesta were measured using 

ion-exclusion High-Performance Liquid Chromatography (HPLC) 
as described previously [22]. Organic acids were detected in all the 
digesta samples, but the digesta from the Pars Pylorica (PP9) had 
a relatively low concentration of organic acids compared to the 
digesta from the other regions. Obviously, higher levels of acetate 
were detected in both the foregut (PS12, TG11, and S10) and the 
hindgut (C4, PC3, DC2, and R1). Conversely, the concentrations of 
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succinate, formate, and n-valerate were lower than those of acetate 
and n-butyrate. Furthermore, lactate concentrations were higher in 
the digesta from the small intestine (D8, PJ7, DJ6, and I5) than the 
digesta from other regions (Figure 1B, Table S2).

Microbiota analysis using the miseq platform
Bacterial DNA was extracted from the digesta as described 

previously [23]. The microbiota composition of the digesta was 

analyzed using Next-Generation Sequencing (NGS) and the MiSeq 
platform (Illumina, CA, USA) as previously described [24]. The alpha 
diversity in each gastrointestinal digesta was different: the hindgut 
digesta showed higher alpha diversity than the forestomach. Weighted 
UniFrac principal coordinates analysis showed that the forestomach, 
small intestine, and large intestine had different microbiota. The top 
10 abundant genera in the stomach, small intestine, and large intestine 
are shown in (Table 1), respectively. As shown in (Tables 2), each 
gastrointestinal digesta had a unique microbiota. In the forestomach 
(PS12, TG11, and S10), the genera Prevotella and Selenomonas were 
dominant, while the genus Clostridium was dominant in PP9 (Table 
1). In the small intestine, each digesta (D8, PJ7, DJ6, and I5) also had 
a unique microbiota, the genus Turicibacter was predominant in I5 
compared with the other regions (Table 2). In the large intestine, 
the various digesta (C4, PC3, DC2 and R1) had similar microbiota, 
relatively the family Ruminococcaceae was dominant (Table 3).

Metabolome analysis using gas chromatography (GC)-
mass spectrometry (MS)

Metabolome analyses of the digesta in water-soluble low-
molecular-weight metabolites were performed using GC-MS as 
described elsewhere [25]. Although statistical analysis was not 
performed, palmitic acid levels were relatively higher across all the 
regions of the gastrointestinal tract of Colobus guereza. In the small 
intestine, the levels of several metabolites such as 2-aminobutyric 
acid, 2-aminoethanol, threonine, and tryptophan were higher than 
those of the other regions.

Discussion
The organic acid concentrations in the forestomach (PS12, TG11, 

and S10) were higher than those of the Pars Pylorica (PP9), although 
the profiles of organic acids in PS12, TG11, and S10 were similar 
to each other (Figure 1B & Table S2). SCFAs, including acetate, 
propionate, and n-butyrate were the major organic acids in the 
forestomach of the Colobus guereza, which is consistent with previous 
observations in the wild colobus [11,12]. In addition, the hindgut 
digesta contained higher levels of SCFAs, similar to those of the 
forestomach; however, the ratio of acetate-to-propionate was higher 
in the hindgut than that in the forestomach (Figure 1B & Table S2). 
These results indicate that microbial digestion and fermentation of 
plant materials occurred in both the forestomach and hindgut of the 
zoo Colobus guereza as described previously [13]. Interestingly, high 

Figure 1A, 1B: The gastrointestinal tract and organic acid concentrations 
of the digesta in Colobus guereza (A). No.12, presaccus (designated as 
PS12); No.11, tubus gastricus (TG11); No.10, saccus (S10); No.9, Pars 
Pylorica (PP9). No.8, duodenum (D8); No.7, proximal jejunum (PJ7); No.6, 
distal jejunum (DJ6); No.5, ileum (I5); No.4, cecum (C4); No.3, proximal colon 
(PC3); No.2, distal colon (DC2); No.1, rectum (R1). Orange area, lactate; 
red area, acetate; yellow area, propionate; purple area, iso-butyrate; light-
blue area, n-butyrate; black area, iso-valerate; and green area, n-valerate. 
Succinate and formate were not detected, therefore, we omitted these acids 
from the graphs. 

Phylum Class Order Family Genus PS12 TG11 S10 PP9 Stomach mean

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella 43.2 38.0 28.2 12.6 30.5

Firmicutes Clostridia Clostridiales Veillonellaceae Selenomonas 24.7 26.9 22.7 2.8 19.3

Cyanobacteria Chloroplast Streptophyta unclassifled unclassifled 4.5 7.5 10.1 2.0 6.0

Finnicutes Clostridia Clostridiales Clostridiaceae Clostridium 0.0 0.0 0.0 18.3 4.6

Finnicutes Clostridia Clostridiales Laclmospiraceae Butyrivibrio 3.9 3.8 4.4 2.4 3.6

Finnicutes Clostridia Clostridiales Veillonellaceae l'v1egasphaera 5.0 4.7 2.6 0.7 3.3

Finnicutes Clostridia Clostridiales Veillonellaceae unclassifled 4.4 4.8 0.6 0.1 2.4

Finnicutes Clostridia Clostridiales Veillonellaceae Other 3.9 3.6 1.7 0.3 2.4

Bacteroidetes Bacteroidia Bacteroidales p-2534-18B5 unclassifled 0.5 0.5 3.8 2.7 1.9

Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium 0.0 0.0 0.0 7.3 1.8

Table 1: Top 10 abundant genus in the stomach of Colobus guereza.
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concentrations of SCFAs were also detected in the hindgut that may 
implicate the hindgut in the microbial digestion and fermentation of 
undigested fibrous feed residues after foregut digestion. Previously, 
high levels of SCFAs, especially acetate, were detected in in vitro 
cultures of the feces of zoo Colobus guereza, showing a high acetate-
to-propionate ratio [26]. Collectively, Colobus guereza might absorb 
SCFAs as energy sources in both the forestomach and the hindgut 
fermentation.

The metagenome analysis revealed that each gastrointestinal 
digesta had different microbiota. Genera Prevotella and Selenomonas 
were detected as the dominant genera in the forestomach; 
Butyrivibrio and Megasphaera were also detected (Table 1). These are 
popular genera in the rumen microorganisms and play an important 
role in rumen metabolism [27,28]; therefore, the foregut microbial 
ecosystem of Colobus guereza may be similar to the rumen ecosystem. 
Genus Prevotella comprised 42-60 % of the bacterial rRNA gene 
copies in the bovine rumen [28], which was similar to the abundance 
of Prevotella in the forestomach of Colobus guereza (Table 1). In the 
large intestine, the family Ruminococcaceae was the most abundant, 
although the major genus was not classified (Table 3). Genera 
Ruminococcus and Oscillospira were also identified in the rumen 
[29-31], especially Ruminococcus favefaciens and R. albus are well-
characterized cellulolytic rumen bacteria. In a previous metagenome 
study, Oscillibacter and Faecalibacterium were predominant in 
the feces of the wild Colobus guereza [15]. These microbiome in 

wild colobus were different from our metagenome results in the 
zoo Colobus guereza (Table 3). A previous report also showed that 
gut microbiota was different between wild and captive monkeys, 
Rhinopithecus brelichi [32].

In the small intestine and the pars pylorica, lactate was a major 
product of organic acid (Figure 1B & Table S2); however, genera 
Lactobacillus and Bifidobacterium were almost undetectable in the 
small intestine, therefore, other microorganisms might produce 
lactate in the intestine of Colobus guereza. Obviously, Clostridium 
was predominant in the small intestine and the pars pylorica 
(Table 2). Previously, Clostridium thermolacticum was identified 
as a thermophilic anaerobe producing high amounts of lactate 
[33]; therefore, Clostridium might be linked to lactate fermentation 
in Colobus guereza. Furthermore, methane producers, such as 
Methanosphaera and Methanobrevibacter, were found in the small 
intestine but not in the foregut. Genera Methanosphaera and 
Methanobrevibacter were identified in the large intestine of mammals 
[34-36], and also in the rumen [37]. Methane metabolism in the small 
intestine of mammals has not been well investigated; therefore, the 
research about small intestinal methanogens should be focused on 
to understand the physiology of methane production in the future.
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Phylum Class Order Family Genus D8 PJ7 DJ6 15 Small intestine 
mean

Firmicutes Clostridia Clostridiales Other Other 14.5 1.1 36.8 29.5 20.5

Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium 15.1 5.1 6.1 14.4 10.2

Firmicutes Clostridia Clostridiales Veillonellaceae Selenomonas 8.2 17.4 6.5 3.5 8.9

Firmicutes Bacilli Turicibacterales Turicibacteraceae Turicibacter 0.2 0.0 9.4 24.2 8.4

Firmicutes Clostridia Clostridiales Lachnospiraceae Butyrivibrio 10.2 13.5 4.6 2.5 7.7

Firmicutes Clostridia Clostridiales Peptostreptococcaceae unclassified 0.4 0.2 15.9 6.8 5.9

Cyanobacteria Chloroplast Streptophyta unclassified unclassified 9.3 7.1 1.1 0.6 4.5

Firmicutes Clostridia Clostridiales Peptostreptococcaceae [Clostridium] 9.5 0.1 2.8 2.0 3.6

Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae unclassified 2.1 7.5 1.7 1.0 3.1

Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium 3.1 4.7 l.3 1.3 2.6

Table 2: Top 10 abundant genus in the small intestine of Colobus guereza.

Phylum Class Order Family Genus C4 PC3 DC2 R1 F13 Large intestine 
mean

Firmicutes Clostridia Clostridiales Ruminococcaceae unclassified 34.8 33.8 42.3 37.7 32.3 37.1

Finnicutes Clostridia Clostridiales unclassifled unclassified 7.2 7.3 9.1 12.2 10.7 8.9

Finnicutes Clostridia Clostridiales Lachnospiraceae unclassified 5.9 6.7 5.5 4.6 8.3 5.7

Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus 5.3 7.0 6.0 5.0 5.1 5.8

Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus 6.6 5.8 4.3 2.7 4.1 4.8

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 4.0 3.5 2.7 3.5 3.1 3.4

Finnicutes Clostridia Clostridiales Ruminococcaceae Oscillospira 1.9 2.0 3.7 4.8 4.6 3.1

Spirochaetes Spirochaetes Spirochaetales Spirochaetaceae Treponema 2.2 2.6 1.5 1.3 3.0 1.9

Finnicutes Clostridia Clostridiales Veillonellaceae Phascolarctobacterium 1.8 2.4 2.7 2.9 3.3 2.5

Bacteroidetes Bacteroidia Bacteroidales S24-7 unclassified 2.7 2.6 1.7 1.5 1.3 2.1

Table 3: Top 10 abundant genus in the small intestine of Colobus guereza.
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