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Abstract

Background: An effective concentration method is required to 
detect Mycobacterium tuberculosis (MTB) in paucibacillary specimens. 
Dielectrophoresis (DEP), a phenomenon in which a force is exerted on 
a dielectric particle subjected to a non-uniform electric field, is useful for 
concentrating bacterial specimens.

Objectives: To investigate whether the procedure using the DEP method 
increases nucleic acid amplification test (NAAT) sensitivity.

Methods: First, the capture rates were examined for multiple electrode 
settings by calculating the bacterial load before and after DEP using quantitative 
real-time PCR. These results were used to determine the optimal electrode 
setting. Second, conventional loop-mediated isothermal amplification (LAMP) 
was performed using 30 µL DNA purified using a PURE DNA extraction kit 
from 60 µL Mycobacterium bovis bacille de Calmette et Guérin culture fluid. 
The minimally-diluted specimen (theoretical concentration, 103 cfu/mL), which 
showed 10 consecutive negative results by LAMP, was subjected to DEP. One 
milliliter of the specimen was concentrated to 50 µL in the DEP chip, and LAMP 
was performed in 30 µL of the specimens without DNA purification.

Results: At 73.2-84.9%, the capture rate was the highest in the setting with 
100 kHz frequency. LAMP with DEP was performed using conventional LAMP-
negative specimens, and eight of ten tests (80%) were positive. The sensitivity 
was higher than that of the conventional LAMP method (p = 0.0007).

Conclusion: The DEP method has the potential to increase NAAT sensitivity 
for the MTB complex in paucibacillary specimens.
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Introduction
Tuberculosis (TB) remains a serious global health concern, 

with 1.5 million reported deaths in 2019 [1]. Accurate and rapid 
diagnosis is important to control TB. Bacterial culture and Nucleic 
Acid Amplification Tests (NAAT) are the definitive diagnostic tools 
for active Mycobacterium Tuberculosis (MTB) [2]. Liquid culture 
shows the highest sensitivity among MTB laboratory examinations; 
however, it takes several weeks to detect MTB. Thus, NAAT is essential 
for rapid diagnosis, but unfortunately, it has a lower sensitivity than 
that of bacterial liquid culture. In reality, approximately 20-50% 
of pulmonary tuberculosis cases globally are diagnosed clinically 

without bacteriological confirmation [1]. Low bacillary burden and 
insufficient MTB recovery from specimens are among the reasons 
why NAAT is not as sensitive as liquid culture [3,4].

To increase the diagnostic sensitivity of active MTB, many new 
molecular methods have been developed. For example, Xpert MTB/
RIF Ultra (Cepheid, Sunnyvale, CA, USA), which amplifies multiple 
target genes, has a higher sensitivity than that of Xpert MTB/RIF [5]. 
Other molecular methods have also been developed [6]. However, to 
date, none of the molecular methods has a higher sensitivity than that 
of liquid culture [5,7].

Another strategy for improving the sensitivity of bacterial 
confirmation tests is to modify specimen processing. Centrifugation 
is generally performed to concentrate and recover MTB. However, 
centrifugation is not an efficient technique to collect bacteria, 
particularly in low bacillary specimens [4,8], necessitating the 
development of other concentration methods.
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The Dielectrophoresis (DEP) method is a good strategy for 
concentrating target cells [9,10], thereby increasing the sensitivity of 
the bacterial confirmation test. DEP is a phenomenon in which a force 
is exerted on a dielectric particle subjected to a non-uniform electric 
field. The DEP method can be efficacious for target cell discrimination 
and isolation [9-13]. For mycobacteria, M. bovis bacille de Calmette 
et Guérin (BCG) and M. smegmatis have been captured using DEP 
methods [14,15].

In this study, the optimal DEP electrode setting for M. bovis BCG 
was examined by calculating the capture rate using quantitative real-
time PCR. It was also verified whether specimen processing using the 
DEP method increases the sensitivity of NAAT using Loop-Mediated 
Isothermal Amplification (LAMP) in a paucibacillary M. bovis BCG 
specimen that showed negative results using the conventional LAMP 
method.

Materials and Methods
Specimen Preparation 

M. bovis BCG was cultured at 37°C in MycoBroth (Kyokuto 
Pharmaceuticals, Tokyo, Japan) until the optical density at 530 nm 
(OD530) of the culture medium reached 0.10. The MycoBroth culture 
fluid was centrifuged, and the cell pellets were resuspended twice in 
DEP buffer. The DEP buffer consisted of 8.5% (w/v) sucrose, 0.3% 
(w/v) dextrose [11], and 1.0% Tween 20, and the buffer was deionized 
using SMNUPB ion-exchange resin (Mitsubishi Chemical, Tokyo, 
Japan). The final conductivity of the DEP buffer was 10 µS/cm.

Dielectrophoresis Device Fabrication
The function generator was the prototype of the ConseeMo α 

instrument (AFI, Kyoto, Japan). The ConseeMo α is a compact device 
that can concentrate bacteria in a specimen using a microfluidic chip. 
The dedicated X-23 chip (AFI, Kyoto, Japan; Figure 1) has a 50 µL 
capacity, and was used after loading with bovine serum albumin 
(BSA; 2 mg/mL; Thermo Fisher Scientific, Basingstoke, UK) for 1 h to 
minimize cell adhesion to the DEP chip.

Evaluation of Optimal Dielectrophoresis Electrode 
Settings for M. Bovis BCG by Quantitative Real-Time PCR

To identify the optimal DEP electrode setting for M. bovis BCG, 
the capture rates in different electrode settings were calculated using 
quantitative real-time PCR (three replicates per electrode setting). One 
milliliter of the prepared specimen was introduced in a continuous 
0.5 mL/h flow into the DEP chip with multiple electrode conditions; 
the frequencies were 1, 50, 100, 150, and 200 kHz, with a fixed voltage 
of 20 Vpp (peak to peak). Capture rates were calculated from the 
bacterial loads before and after DEP using real-time PCR. Bacterial 
DNA from 50 μL of the initial prepared specimen without DEP and 
the concentrated specimen were heated in boiling water for 10 min, 
followed by sonication for 10 min. Next, real-time quantitative PCR 
was performed using PowerUp SYBR Green Master Mix (Thermo 
Fisher Scientific, Waltham, MA, USA) and MTB-F and MTB-R 
primers [16] on a QuantStudio 3 system (Thermo Fisher Scientific). 
Briefly, the PCR reaction mixture (25 μL final volume) was comprised 
of 12.5 μL 2x Master Mix, 0.5 μL 10 μM forward and reverse primer, 
and 2 μL extracted DNA sample. Then, PCR was performed under 
the following conditions: initial denaturation and activation at 95°C 
for 10 min, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min.

Paucibacillary Specimen Preparation 
M. bovis BCG culture fluid prepared as described above was 

serially diluted in DEP buffer (1/1,000, 1/2,500, and 1/5,000). The 
single minimally-diluted specimen that showed 10 consequtive 
negative results by conventional LAMP was subjected to the DEP 
method (Figure 2). The theoretical concentration of BCG in the 
1/5,000 diluted specimen was 103 cfu/mL.

Conventional Loop-Mediated Isothermal Amplification 
Method

Conventional LAMP was performed using a commercial LAMP 
kit for MTB detection (Eiken Chemical, Tokyo, Japan) as described 
previously (Figure 2) [17]. Briefly, the DNA from 60 µL specimen was 

Figure 1: Image of the dedicated X-23 chip for DEP (AFI, Kyoto, Japan). A 
specimen was introduced via continuous flow into the DEP chip, and target 
bacterial cells were captured in the chip by the DEP phenomenon.

Figure 2: Overview of the conventional and DEP/LAMP methods. 
Conventional LAMP was performed using 30 µL purified DNA, prepared by 
subjecting 60 µL M. bovis BCG fluid to DNA extraction using a PURE DNA 
extraction kit. The culture fluid diluted 5,000 times with DEP buffer showed 
10 consecutive negative results using the conventional LAMP method. This 
sample was subjected to the DEP method. One milliliter of the specimen 
was concentrated to 50 µL in the DEP chip and LAMP was performed in 30 
specimens without DNA purification.
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purified using a PURE DNA extraction kit (Eiken Chemical). Then, 
30 µL extracted DNA was added to the LAMP reaction tube (Eiken 
Chemical). The LAMP reaction for each specimen was performed 
with incubation at 67°C for 40 min, and the result was determined by 
real-time turbidity measurements and visual fluorescence observation 
under ultraviolet light using Loopamp EXIA (Eiken Chemical). 
Positive results were considered as those with differential calculation 
values, and the maximum turbidity value calculated by the moving 
average on differential values was ≥0.10.

Loop-Mediated Isothermal Amplification Using the 
Dielectrophoresis Method 

The electrode condition providing the highest capture capacity 
was determined from the quantitative real-time PCR results. 

One milliliter of the prepared specimen was introduced in a 
continuous 0.5 mL/h flow into the DEP chip with the above electrode 
condition. After the DEP procedure, 30 µL of the concentrated 
specimen was inserted into the LAMP tube directly from the DEP 
chip to avoid the loss of M. bovis BCG in procedures such as pipetting 
or DNA purification. Then, the LAMP reactions were performed as 
described above (Figure 2). 

Statistical analysis
The sensitivity of the LAMP test with the DEP method was 

compared to the sensitivity of the conventional method using Fisher’s 
exact test. A p-value of <0.05 was considered significant. Statistical 
analyses were performed using GraphPad Prism version 7.02 for 
Windows (GraphPad Software, La Jolla, CA, USA).

Ethical considerations
Ethical approval was not required for this laboratory-based in 

vitro study.

Results
Capturing Capacity in Each Electrode Condition

The capture capacity for each electrode condition is shown in 
Figure 3. The highest capture capacity (73.2-84.9%) was achieved 
using the setting with 100 kHz frequency and 20 Vpp voltage. 

Minimally-Diluted Specimen Preparation
The culture fluid was diluted 5,000 times with the DEP buffer 

before the specimen showed 10 consecutive negative results using 
the conventional LAMP method (Table 1). This single specimen was 
subjected to the DEP method.

LAMP Test by The DEP Method
Eight of ten (80%) tests yielded positive LAMP results in the 

specimens prepared using the DEP method (Table 1). The sensitivity 
was significantly higher than that of the conventional method (p = 
0.0007).

Discussion
The LAMP sensitivity was 80% after bacterial concentration 

using the DEP method and the optimal electrode setting in the 
minimally-diluted specimen. This sample showed negative results 
by conventional processing. Our result revealed that modifying 
the specimen concentration can improve the NAAT sensitivity 
in a paucibacillary specimen. During specimen processing, it was 

important that the concentration efficacy was increased and minimal 
target cells were lost.

The DEP method was effective for the capture of M. bovis BCG, 
as described previously [14], leading to specimen concentration. The 
efficacy of target cell capture in DEP depends on cell polarization, 
the conductivity medium, and the electrode condition [12,14,15]. 
Cell polarization is associated with parameters such as size, geometric 
shapes, and electrical properties of the cell wall and cytoplasm [14,18]. 
Cell capacitance might be influenced by factors such as drug exposure 
or live/dead cell status [14,18]. In this study, the condition of M. bovis 
BCG was post-liquid culture without anti-tuberculosis drug exposure. 

Method Test Df Tt Result

Conventional 1 0.003 - -

2 0.003 - -

3 0.047 - -

4 0.023 - -

5 0.088 - -

6 0.089 - -

7 0.003 - -

8 0.003 - -

9 0.095 - -

 10 0.003 - -

DEP 1 0.002 - -

2 0.209 22:30 +

3 0.179 34:06 +

4 0.166 34:06 +

5 0.182 25:12 +

6 0.192 28:00 +

7 0.098 - -

8 0.127 33:48 +

9 0.203 26:54 +

 10 0.131 31:42 +

Table 1: LAMP test results: Conventional versus DEP methods.

LAMP: Loop-Mediated Isothermal Amplification; DEP: Dielectrophoresis; Df: 
Differential Calculation Value; Tt: Threshold Times (min); -: negative, +: positive

Figure 3: The capture rate for M. bovis BCG at multiple DEP electrode 
settings. The median capture rate with the range is shown. The highest 
capture rate (73.2-84.9%) was obtained using 100 kHz frequency and 20 
Vpp voltage.
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In terms of medium conductivity, a lower-conductivity medium 
is required to efficiently capture the target cells [12,15]. The DEP 
buffer was deionized by ion exchange resin to reach a conductivity 
of 10 µS/cm (as low as possible). As for electrode conditions, the 
optimal electrode conditions for capturing the MTB complex were 
determined based on the results of the capture capacity of multiple 
electrode settings using quantitative real-time PCR.

It is also important to maximally recover target cells during 
processing. In the DEP method, the chip was loaded with BSA and 
1% Tween 20 was added to the buffer to minimize tight cell adhesion 
to the DEP chip itself. In addition, the specimens were transferred to 
the LAMP reaction tube directly from the DEP chip without DNA 
purification. Although we were concerned that these procedures 
might interfere with the LAMP reaction, it worked normally.

In the conventional method, 30 copies of M. bovis BCG are 
inserted to the LAMP tube from the specimen with a theoretical 
concentration of 103 cfu/mL. This copy number is higher than that 
of the theoretical limit of detection, i.e., 0.38 genomes/tube [19]. The 
reasons might be as follows: 1) the actual limit of detection with the 
LAMP test has been reported to be higher (102-103 cfu/mL) because 
the concentration is not increased through the PURE DNA extraction 
method [20,21] or 2) in this study, a certain number of bacteria might 
have been lost during procedures such as resuspension or dilution.

Although the concentration and recovery procedures mentioned 
above were performed in the minimally-diluted specimen, which 
showed negative LAMP results by the conventional method, the DEP 
method yielded negative results two out of ten times (Table 1). This 
result was obtained because not all M. bovis BCG cells were captured 
in the DEP chip, and/or the M. bovis BCG recovery from the chip was 
insufficient, as shown in the results of capture capacity by quantitative 
real-time PCR.

This experiment was conducted using in vitro specimens 
containing only M. bovis BCG cells and DEP buffer. When the DEP 
efficacy is verified using clinical specimens, particularly sputum, 
the efficacy might decrease because of the influence of mucus and 
different cell types and substances. Appropriate processing of clinical 
specimens for the DEP method will also be needed.

Conclusion
The DEP concentration method was effective for increasing the 

NAAT sensitivity in paucibacillary MTB complex specimens. The 
utilization of the technology will be expected to further increase the 
sensitivity of NAAT.
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