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Abstract

An innate or acquired dysfunctional (mainly hyperactive) Hypothalamic-
Pituitary-Adrenal (HPA) axis and altered cortisol levels are the mainstays of 
the proposed hypothesis for the pathophysiology of Major Depressive Disorder 
(MDD). The hypothesis has a strong theoretical basis and is supported by the 
animal studies, but it encounters difficulties when applied to humans. The current 
hypothesis explains structural and functional brain pathologies and symptoms 
of the disease via high cortisol levels. However, only about half of MDD patients 
have high cortisol levels, which are mostly observed in specific subgroups. 
Depressive patients with melancholic and psychotic features have higher 
cortisol levels than other depressive patients, but patients with atypical features 
have normal or even lower cortisol levels. HPA axis and cortisol abnormalities 
in a high-risk population for depression (e.g., healthy daughters of depressed 
mothers) suggest that genetic factors might underlie the HPA axis dysfunction. 
In clinical trials antiglucocorticoid treatments have not been promising, and 
there is no currently available antiglucocorticoid treatment for depression. In 
this paper we briefly summarize the current status of the evidence and discuss 
whether the hypothesis of a dysfunctional HPA axis and an abnormal cortisol 
level is well-founded for depression.
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non-medical readership present the hypothesis as proven theory 
and many clinicians accept the hypothesis without realizing its 
weaknesses. This review seeks to clarify the strong and weak points of 
the hypothesis for clinicians who are not experts in the field. 

First, an explanation of the terminology used in this review. 
As discussed below, some researchers have found evidence for a 
hyperactive HPA axis and high cortisol levels in MDD, while others 
have reported reduced HPA axis activity and normal or reduced 
plasma cortisol levels [2]. Many authors assume that abnormal 
cortisol levels are sufficient evidence of HPA axis dysfunction, but 
the HPA axis is not the only regulatory system determining plasma 
cortisol levels. Many other systems such as the sympathoadrenal 
and immune systems, which are important in MDD etiology, also 
influence plasma cortisol levels significantly. Past researchers may 
have underestimated these other systems in their attribution of 
cortisol levels solely to the HPA axis [3]. Therefore, we prefer the term 
“cortisol abnormality” if there is no specific observation of HPA axis 
pathology. On the other hand, we use the term “HPA dysfunction” if 
there is specific evidence of HPA pathology.

Depression and Cortisol
Since its first definition by Hippocrates as melancholia, both 

physicians and patients have described stress-provoking events 
before the onset of clinical depression. Up to 70% of depressed 
patients report at least one stressful event in the previous year [4]. 
In a large epidemiological study, subjects carrying susceptibility 
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Introduction
Major Depressive Disorder (MDD) is one of the most common 

psychiatric diseases. The World Health Organization estimates that 
it will be the second most prevalent disabling disease by 2020 [1]. 
Half a century of significant efforts at understanding the etiology 
of MDD has led to few evidence-based hypotheses and models to 
explain the pathophysiology of the disease. One of the best known 
is that depressed patients have a dysfunctional HPA axis resulting in 
abnormal plasma cortisol levels, which in turn are associated with 
depressive symptoms. In this review, we will briefly summarize the 
current state of the evidence and consider whether this hypothesis 
is sufficiently well-founded to explain the pathophysiology of the 
disease. We note that many books and articles written for a general 
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genes had higher odds for depression if they had a high number of 
past stressful events compared to those who had a low number [5]. 
Although the commonly used Diagnostic and Statistical Manual of 
Mental Disorders (DSM) does not require adverse life events as a 
criterion preceding the onset of a depressive episode, it recognizes 
stressful experiences and childhood trauma as risk factors by stating 
that “Stressful life events are well recognized as precipitants of major 
depressive episodes, but the presence or absence of adverse life events 
near the onset of episodes does not appear to provide a useful guide 
to prognosis or treatment selection” [6]. We strongly suspect that the 
stress-depression association is an important research area for a more 
complete understanding of the pathophysiology of depression.

The basic function of the stress response is preserving 
homoeostasis. The homeostatic threat may range from small everyday 
annoyances to serious trauma. The brain and body have a reciprocal 
relationship during the stress response via chemical and hormonal 
feedback loops. The best known stress system consists of the HPA 
axis, which is activated by neurons located in the dorsomedial 
parvocellular subdivision of the hypothalamus [7] (Figure 1). These 
neurons synthesize Corticotrophin-Releasing Hormone (CRH) as 
well as Vasopressin (VP), which are released into portal circulation. 
CRH reaches the anterior pituitary gland where it stimulates the 
secretion of Adrenocorticotrophic Hormone (ACTH) into peripheral 

circulation. The primary target of ACTH is the zona fasciculata of 
the adrenal gland, where it stimulates the production and secretion 
of Glucocorticoids (GC) (cortisol in humans, corticosterone in rats). 
Glucocorticoids influence metabolic and immune systems, especially 
during stress. Cortisol adaptively enhances gluconeogenesis and 
increased vascular tone during the acute stress response, but a 
prolonged stress response increases the risk of disease states like 
diabetes or hypertension [8,9]. In the case of prolonged stress, 
adaptations (e.g. target organ desensitization) take place to reduce 
deleterious long-term cortisol effects (Box 1).

The brain’s stress response is similar to that of other organs in 
that a temporary cortisol surge is helpful for metabolic adaptation 
and augments cognitive functions like memory and alertness during 
the acute stress response [10]. On the other hand, prolonged high 
cortisol levels in chronic stress apparently cause neuronal atrophy 
and decreased neurogenesis in the hippocampal formation and other 
brain regions, resulting in impaired cognitive functions. Therefore, 
the fine-tuning of cortisol levels is not only essential for optimum 
functioning under stress but also for prevention of neuronal damage 
in the long-term. The fine-tuning of cortisol secretion depends on 
free (unbound) cortisol, which has a regulatory effect on HPA axis, as 
well as the axis itself. Stimulation of cortisol receptors in the pituitary, 
hypothalamus and many areas of the limbic system (i.e. hippocampal 

Figure 1: The HPA axis and interaction with other systems.

Box 1 

The prolonged stress response varies according to the type of stress. For example chronic exposure to repeated 

stress such as restraint is associated with increased HPA activity in the first few days but cortisol and ACTH levels 

gradually normalize with down-regulation of limbic GC receptors. On the other hand, ongoing chronic stress 

induces amygdala hypertrophy, dendritic remodeling and reduction in hippocampal cell production. Another form 

of chronic stress such as chronic inflammation is associated with high ACTH and cortisol levels, which lasts as 

long as inflammation persists. The reduction of parvocellular CRF expression and release whereas the increment 

of AVP expression and release suggests that AVP plays the primary role for the high ACTH and cortisol during 

chronic stress. 

Box 1: 
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formation, amygdala) can reduce cortisol levels following the 
reduction of ACTH levels (Box 2).

Although cortisol and its secretion are generally studied under 
challenging conditions, cortisol is an essential hormone that is 
needed to meet everyday life challenges. Cortisol follows a circadian 
rhythm reaching its peak around sunrise and its lowest value around 
midnight [7] under the control of pulsatile secretion of CRH. 

Based on the idea that depression is associated with stress, pioneer 
researchers measured the cortisol levels of depressed patients. Initial 
studies found increased cortisol secretion or loss of daily rhythm (i.e. 
normal cortisol levels in the morning with higher cortisol values in the 
evening) [11-13]. However, those studies most commonly recruited 
small samples of patients with severe depression such as hospitalized 
melancholic patients and patients with psychotic features. Subsequent 
studies with larger but heterogeneous sample groups confirmed the 
higher cortisol values in depressed patients, with a medium effect 
size (Cohen’s d=0.6) [14]. It is important to consider this number 
carefully because it implies that up to 76% of the cortisol values of 
depressed patients and healthy subjects overlap but 73% of depressed 
subjects’ values are above the mean of the healthy subjects (Figure 
2). There is a 66% chance that a person picked at random from the 
depressed group will have higher cortisol levels than a person picked 
at random from the healthy group (probability of superiority).

Long-term high cortisol secretion in depressed patients suggests 
that the regulatory HPA feedback mechanism involving cortisol is 
not functioning, as it should. One way to test the cortisol feedback 
system is to stimulate GC receptors at different levels of the HPA axis. 
Under normal conditions, stimulation of cortisol receptors would 

reduce HPA axis activity. Dexamethasone is a synthetic cortisol, 
which has a capability of inhibiting the pituitary-adrenal segment of 
the HPA axis but cannot reach the hypothalamus or other brain areas 
because of the presence of the P-glycoprotein blood brain barrier. 
During a Dexamethasone Suppression Test (DST) [15], low dose 
dexamethasone (i.e. 1 mg) administration in the evening stimulates 
only the GC receptors at the pituitary and decreases cortisol 
secretion via reducing ACTH levels. It is generally assumed that non-
suppression of cortisol represents GC receptor resistance [16]. Up to 
45% of depressed patients have higher post-dexamethasone cortisol 
levels than healthy controls [14]. The reduced sensitivity of GC 
receptors to dexamethasone is generally accepted as evidence for GC 
resistance to cortisol during depression, and depressed patients with 
high daily cortisol level also show DST non-suppression [17]. Further 
support for the idea of reduced GC receptor sensitivity in depression 
comes from treatment studies finding that Tricyclic Antidepressants 
(TCAs) increase the sensitivity of GC receptors leading to cortisol 
reduction [18]. (There are mixed results for Selective Serotonin 
Reuptake Inhibitors (SSRIs)). Reduced cortisol sensitivity of GC 
receptors leads to reduced physiological activity of cortisol in the 
body generally. Thus, high plasma cortisol levels might not produce 
the expected effects in specific target organs [19]. This might be a 
reason why we do not observe Cushing-like symptoms (increasing 
abdominal fat, round face, dermal stretch marks) among the primary 
depressive symptoms. 

One problem with hyperactive HPA axis theory is that ACTH 
levels, which regulate cortisol levels at the adrenal cortex, do not 
show a parallel increase in depression: only 20% (Cohen’s d=0.28) of 
depressed patients have increased ACTH levels compared to controls 

Box 2 

There are two kinds of GC receptors. c have a high affinity for endogenous corticosteroids compared to 

Glucocorticoid (Type II) Receptors (GR). The high-affinity MR are typically saturated under resting conditions, 

and the pulsatile cortisol secretions mainly stimulate GR. Therefore, it is believed that GR receptors are more 

important for regulation of HPA axis. GR receptors also show high affinity for dexamethasone whereas MR 

receptors do not. 

 
Box 2: 

Figure 2: Hypothetical Gaussian Curves for the cortisol levels of healthy subjects and depressed patients. Black curve represents healthy subjects and blue curve 
represents patients. Although there is a large overlap (76%) among the groups, 73% of depressed subjects’ values are above the mean of the healthy subjects. X 
axis represents standard deviations.
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[14]. This finding suggests that other factors affecting the adrenal gland 
might influence cortisol secretion. The sensitivity of ACTH receptors, 
sex hormones, immune system activation, and direct stimulation of 
the sympathetic system via the splenic nerve (sympathetic-adrenal-
medullary axis) are examples of factors that modulate cortisol levels 
[20]. Altered functioning of the immune system (increase in TNF-α 
and IL-6) and the Autonomic Nervous System (ANS) are well-known 
findings in depression [21,22]. Removal of splenic nerve input to the 
adrenal glands increases cortisol secretion by augmenting adrenal 
responsiveness to ACTH [23]. During metabolic challenges, cortisol 
hyper secretion is dependent on ACTH sensitization [24]. Thus, 
cortisol levels of depressed patients do not depend solely on pituitary-
adrenal axis function, and other factors that have a direct effect on 
cortisol secretion should be considered.

Depression subgroups
Although it is widely accepted that cortisol levels are high in 

depression, the literature suggests that only about 2/3 of depressed 
patients have higher cortisol levels than the average healthy subject. 
Why do some patients have abnormally high cortisol levels while the 
others do not? Can symptom heterogeneity and diagnostic problems 
underlie the low validity of cortisol findings?

For the last century clinicians have tried to define subgroups of 
depression with better symptom clustering. Based on those efforts, 
American Psychiatric Association (APA) recognized several subtypes 
and included them in the DSM system. Different subtypes of depression 
might be associated with different cortisol levels. Depressive patients 
with melancholic or psychotic features have higher cortisol levels than 
other depressive patients [14,25]. Although melancholic or psychotic 
features are generally associated with the severity of depression, the 
severity and the features of a depressive episode have independent 
associations with cortisol levels [14]. Furthermore dexamethasone 
non-suppression rates are higher in patients manifesting psychotic 
depression (64%) compared to those of non-psychotic patients (45%) 
[26]. In contrast, depressed patients with atypical features have normal 
or even low cortisol levels [27]. However, sub typing only partially 
explains the large variation in cortisol levels of depressed patients 
because more than 50% of depressed patients cannot be classified as 
one of those subtypes. Furthermore, in the long-term, patients often 
show differing symptom profiles in successive depressive episodes. 
Almost half of depressed patients have varying degrees of melancholia 
with atypical symptoms [28] and young patients with psychotic 
features have a higher incidence of mania in the forthcoming years 
[29]. Bipolar patients also show HPA dysfunction and recent meta-
analyses suggested that HPA dysfunction rates are higher than those 
of unipolar depressed patients [30,31].

In recent years the generality of high cortisol levels in depression 
has been challenged further by findings of reduced cortisol levels 
in outpatient populations, not necessarily associated with atypical 
features [32]. These unexpected low cortisol findings were initially 
linked to comorbidity [33] because patients with comorbid anxiety 
disorders such as PTSD were reported to have lower cortisol levels 
than those suffering from depression alone [34]. However, more 
recent studies have found anxiety levels in depression to be associated 
with higher rather than lower cortisol levels [35]. But the finding of 
low rather than high cortisol levels in depressed patients without 

significant comorbidity has persisted [32,36].

Is HPA Dysfunction a State or Trait Factor? 
It has long been questioned whether cortisol alteration is a state 

or a trait factor for depression. Trait factors should be present before 
the onset of the disease and also should be present between episodes. 
Moreover, trait factors may be present in the relatives of patients 
as endophenotypes. Endophenotypes are genetically transmitted 
and may be closely related to the etiopathogeneis of the disease. On 
the other hand, state factors are present only during a specific time 
window when the disease symptoms are present. The answer to the 
question of whether cortisol alterations in depressed patients are a 
trait or state factor is crucial for understanding the role of the HPA 
axis in the etiopathogeneis of the disease. So far there is no clear 
answer. Depression patients in remission show large variations in 
cortisol values. With some studies reporting state-like normalization 
of cortisol values while others show continued trait-like altered values. 
Recent studies further suggest that a hypoactive HPA axis is not an 
exceptional finding among remitted patients [32,36]. It is interesting 
that cortisol levels during the disease state also predict the cortisol 
levels in after treatment and more than half of the patients (56%) 
have similar cortisol levels before and after treatment regardless of 
symptomatic improvement [37].

Some confounding factor such as comorbidity discussed above 
might be responsible for the inconsistencies [38-40]. Another 
important confounding factor may be the proximity of future 
relapse. Both high [41,42] and low cortisol levels have been found 
to predict relapses [43-46]. Yet another confounding factor is being 
on antidepressant treatment. Antidepressants may have direct 
and indirect effects on the HPA axis via cortisol receptors or other 
mechanisms (e.g. antidepressants may decrease the amygdala’s 
response to negative stimuli, reducing HPA activity). Antidepressants 
may exert a bidirectional normalizing effect on HPA axis activity and 
cortisol secretion in depressed patients [47]. Perhaps all one can say 
at this point is that HPA axis dysfunction and cortisol level alteration 
are present during remission in a majority of patients, though the 
details are unclear.

Supporting the view of altered cortisol levels or HPA axis 
dysfunction as a trait factor, investigators have reported abnormal 
(increased or decreased) morning cortisol levels in the healthy high-
risk children of depressed patients [48,49]. Cortisol patterns during 
the day or after a Dex/CRH test are highly similar between such high-
risk children and their depressive parents [36,50]. Cortisol values are 
similar and stable among discordant monozygotic twins, although 
the individuals with a history of MDD showed slightly higher cortisol 
than their discordant siblings [51]. These findings are important 
evidence that cortisol alterations in depression might be traits related 
to genetic mechanisms and present before the symptom onset.

Because cortisol secretion is a dynamic process and levels 
change in response to everyday stressors, researchers investigated 
the interaction between multiple cortisol measurement and daily 
events (Box 3). Depressed patients show blunted HPA axis responses 
to negative daily events and mood changes [52], and LeMoult et al. 
found further evidence for cortisol alterations in subjects before the 
disease onset [50]. Traumatic life events predicted depression in girls 
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with high cumulative cortisol secretion through the day but not in 
girls with low cortisol secretion.

Beyond the genes, epigenetic mechanisms might also influence the 
HPA axis and cortisol secretions. The childhood trauma is one of the 
best-known environmental factor affecting epigenetic mechanisms. 
Animal and human data suggest that early adversities increase HPA 
axis sensitivity to stress, producing abnormal cortisol levels during 
the stress response [53]. It seems that this effect is independent of 
having depressed parents. 

One other well-known pre-disease vulnerability factor for 
depression is neuroticism. This trait-like vulnerability factor increases 
the odds of depression when it is associated with high morning 
cortisol levels in youths [54].

In conclusion, the present data suggest that trait-like cortisol level 
abnormalities (high or low) are present in high-risk subjects, both 
those with depressed parents and those with traumatic childhoods. 
During inter-episode periods, abnormal cortisol levels also constitute 
a risk factor for relapse. The presence of altered cortisol levels before 
the disease onset in high-risk groups and during the inter-episode 
periods of patients suggest that altered cortisol levels should be 
accepted as trait factor for depression for some groups of patients. 
However, we are still well short of defining the precise characteristics 
of such patient groups.

Does Cortisol Alter Brain Structures in the 
Depressed Patients?

A substantial literature exists examining the effects of cortisol on 
neural structures and functions. Acutely increased cortisol improves 
attention and memory functions, but chronically high cortisol 
has detrimental effects on both cognitive functions and neuronal 
structures [55]. Cortisol changes the energy metabolism of neurons 
and in the long-term leads to neuronal atrophy and cell death [56]. 
The reduction of new cell formation from stem cells is associated 
with depressive symptoms [57]. The hippocampal formation, 
which is intimately involved in memory, spatial orientation, and 
HPA regulation, comprises the neurons most sensitive to hypoxia 
and metabolic alteration. Whether cellular changes secondary to 
increased cortisol result in frank hippocampal formation atrophy is 
unclear, but 8-12% smaller hippocampi have been reported among 
depressed patients relative to healthy controls [58]. Furthermore, 
hippocampal formation volume is negatively correlated with the 

duration of depression, supporting the idea that high cortisol levels 
might impair new cell formation and lead to atrophy of the existing 
cells [59]. However, other studies did not show a clear relationship 
between duration of illness and hippocampal formation volume [60]. 
This may be because hippocampal atrophy as a function of illness 
duration appears to be influenced by the chromosome 11 codon 
66 genotype, being present in Val66Val homozygotes but absent 
among Val66Met heterozygotes [61]. The val66met allele codes for 
brain derived neurotrophic factor which exerts a protective effect on 
hippocampal neurons [62]. Long-term follow-up studies (6 months 
to 11 years) do not show a further reduction in total hippocampal 
formation volume, but subjects with a smaller hippocampal formation 
have higher odds for relapse [63-67]. Age might have significant 
moderating effect. Elderly but not adolescent depressed patients had 
hippocampal formation volume loss in a long-term follow-up [66,67] 
and depression is a risk factor for dementia among the elderly [68]. 

In recent years, with the help of advanced imaging techniques, 
subfields of the hippocampal formation have been measured in vivo, 
and regional changes (rather than total volume) have been reported 
during long follow-up periods [65]. The hippocampal formation 
consists of three histologically identified subfields: the hippocampus 
proper or Cornu Ammonis (CA) with its areas CA1-4; the Dentate 
Gyrus (DG) with its superficial layer the hilus; and the subiculum. 
Among those regions, the DG is where stem cells replicate and 
differentiate into neurons. Preclinical studies have proposed that 
neurogenesis in this region is helpful for clinical recovery [69]. 
However, rather than the DG, the subiculum has been the most 
commonly reported region for structural alteration in depressed 
patients [65,70]. This is perhaps not surprising as the subiculum is 
the formation’s major output structure projecting to frontal, parieto-
occipital, and temporal cortex.

A few studies have shown a relationship between cortisol levels 
and hippocampal formation volume [71-73], and the correlations 
have been mostly negative, but concern remains that single cortisol 
levels might not be sufficient to assess HPA axis dysfunction. With 
new brain imaging and cortisol rhythm measurement techniques, 
future studies are awaited to show the relationship between cortisol 
levels and hippocampal formation structure, especially in specific 
regions.

Beyond the hippocampal formation, meta-analyses have suggested 
that other limbic regions (cingulate cortex, insula) and frontal cortex 

 

Box 3  

One of the important developments in the methodology is salivary cortisol measurement. Itenables the sampling of 

large numbers of subjects in ecologically valid conditions. It appears that salivary cortisol has time sensitivity and 

the gap between patients and controls is more prominent after 30 minutes of awakening whereas at 60 minutes the 

gap diminishes. Despite the fact that salivary measurement represents free (unbound) cortisol levels, while plasma 

measurements represent total cortisol levels (both bound and unbound); there is a strong correlation between 

salivary cortisol and post-dexamethasone cortisol [15]. One meta-analysis showed that morning salivary cortisol 

levels are higher in depressed patients, but there are high intra-assay coefficients of variations in cortisol kits [88]. 

Therefore, we need standardization of kits for measuring salivary cortisol. 

Box 3: 
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are smaller in depressed patients [74]. Post-mortem investigations 
indicate that a loss of glial cells and neuronal atrophy might underlie 
the smaller brain regions [75]. The effects of cortisol on those regions 
are speculative and still under investigation [Arnsten, 2009].

Antiglucocorticoid Drugs for Treating 
Depression

Currently available antidepressants produce their efficacy via 
monoamine transmitters. Most of them inhibit serotonin and/or 
noradrenaline reuptake and increase monoamine concentration in 
the synaptic cleft. Those drugs, particularly the tricyclics, also increase 
the sensitivity of cortisol receptors and decrease HPA activity. On the 
other hand, there are only a few available drugs that inhibit cortisol 
synthesis and none has been approved for depression treatment alone 
or as an adjunct to ongoing antidepressant treatment. Among those 
drugs, metyrapone, which decreases cortisol synthesis by inhibiting 
the final step enzyme (11 beta-hydroxylase), was tested as an 
adjunct or augmentation treatment in depressed patients. In the first 
placebo-controlled study with 63 patients, metyrapone was superior 
to placebo as an adjunct therapy to SSRIs, accelerating the onset of 
antidepressant action and producing a better treatment outcome 
(more patients responded to treatment) [76]. But a second placebo-
controlled study which enrolled 165 treatment resistant patients, 
fond no difference [77]. In both studies measured cortisol levels were 
unchanged with metyrapone treatment, perhaps reflecting HPA axis 
dysfunction in depression.

Ketoconazole, which similarly decreases cortisol synthesis by 
inhibiting a number of enzymes in the production chain, also acts 
as a GC receptor blocker. It is used primarily as a fungicidal drug at 
lower doses and may cause significant side effects at the higher doses 
required for antiglucocorticoid activity. Initial case reports suggested 
that ketoconazole might be a promising drug. However, two blind 
studies did not yield the expected results. In one, improvements 
of depressive symptoms were observed only in hypercortisolemic 
patients [78], and in the other no improvement was seen [79]. 

Although in vivo human studies have yielded conflicting results 
on Cerebrospinal Fluid (CSF) or blood CRH levels in depressed 
patients, animal studies have shown that high CRH secretion or 
exogenous CRH injection causes depressive and anxiety symptoms 
[7]. Furthermore, antidepressant or anxiolytic effects of CRH 
antagonists were found in animal models. However, clinical trials 
have not been promising [80,81].

Vasopressin is a peptide, which is released with CRH from 
the hypothalamus. It potentiates the action of CRH on ACTH. 
Vasopressin levels are increased in depressed patients and decreased 
with antidepressant treatment [82]. Vasopressin alone has a capacity 
for maintaining the basal ACTH secretion and HPA system activity 
in mice deficient for the CRH receptor. However, clinical trials with 
the vasopressin receptor antagonist SS149415 showed no superiority 
over placebo in depressed patients. 

As a high cortisol level is accepted by many investigators 
as evidence of HPA dysfunction in depression, administrating 
glucocorticoid receptor blockers might directly reduce the 
detrimental effects of high cortisol and indirectly lead to up-
regulation of the glucocorticoid receptor numbers, further enhancing 

cortisol’s negative feedback on the HPA axis after removal of the 
blockers. Mifepristone is an antagonist with a high affinity for 
both progesterone and glucocorticoid receptors, increasing ACTH 
and cortisol in both patients and healthy subjects. Two controlled 
studies suggest that mifepristone is effective in decreasing psychotic 
symptoms in depression but not core depressive symptoms [83,84].

Among the antiglucocorticoid treatments, the most promising 
results have come from Dehydroepiandrosterone (DHEA) trials. Like 
cortisol, DHEA is secreted by the adrenal cortex and may interfere 
with cortisol via multiple mechanisms including decreasing cortisol 
activity at the receptor level. In open-label and double-blind studies, 
an antidepressant effect of DHEA has been reported [85-87].

Conclusions
After 50 years of investigating the HPA axis and cortisol 

in depressed patients it is hard to say we have reached strong 
conclusions. On the other hand, with each study, we increase our 
knowledge about the stress response, factors affecting the HPA axis 
and the neurobiology of depression.

1. During the depressed state abnormal cortisol levels are seen 
in nearly 50% of patients, and this proportion is higher in specific 
subgroups such as those with psychotic and melancholic features. 
With recent developments in cortisol measurements (e.g. repeated 
salivary cortisol measurement during the day in real life situations) 
[88], it will be possible to study acute cortisol abnormalities that we 
cannot presently detect, and the percentage of depressed patients 
showing cortisol abnormalities is likely to increase.

2. Most of the patients who manifest cortisol abnormalities 
during depression show similar abnormalities between the episodes. 
Furthermore, high-risk groups such as the patients’ children and 
other relatives also show evidence of cortisol abnormality and/or 
HPA dysfunction. Thus, cortisol alteration and/or HPA dysfunction 
are strong candidates for trait-like endophenotypic features of 
depression susceptibility.

3. During remission the low cortisol levels found in some high-
risk patient groups may be related to a pituitary CRH receptor down-
regulation following a long period of stress-induced hypothalamic 
CRH secretion during depressive episodes [89]. This also may be a 
trait marker for a specific group of patients.

4. Cortisol is an end product of HPA axis activity, but the 
HPA axis is not the only system that controls cortisol secretion. Other 
factors (immune system, sex hormones, ANS) that are also involved 
in the pathophysiology depression might influence cortisol levels and 
have not been well studied in that context.

5. There is no currently available antiglucocorticoid 
treatment for depression. However, there is some evidence that 
antiglucocorticoids might be effective in ameliorating psychotic 
symptoms in psychotic depression.

6. It is well known that chronically high cortisol has 
deleterious effects on neurons and glial cells. However, it is unclear 
whether observable structural changes in the hippocampal formation 
and other brain regions in depression are caused by high cortisol 
levels. Advanced neuroimaging studies are needed to show the details 
of cortisol’s effect on the brain.
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