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(EAE) is a well-known animal model of MS; it is induced directly by 
administration of a myelin antigen, such as Myelin Oligodendrocyte 
Glycoprotein (MOG), together with an adjuvant. A critical role of 
IL-6 in the animal model of MS, EAE, has been demonstrated by a 
number of studies: systemic IL-6 KO mice are resistant to EAE [17-
21], and neutralization of IL-6 with antibodies leads to a reduced 
disease [22], in line with the blockade of IL-6 trans-signaling, which 
delays the onset of adoptively transferred EAE [23]. Oppositely, some 
studies show that the virus-mediated transgenic expression of IL-6 
in the CNS reduces EAE [24] and that the systemic administration 
of IL-6 also reduces the symptomatology in a viral model of EAE 
[25]. Therefore, IL-6 has a dual role in EAE, both potentiating and 
inhibiting it, reflecting the system’s complexity. The next logical step 
at that point was to elucidate the identity of the key cell types that 
produce and respond to IL-6 in the CNS and whether the critical 
actions of IL-6 are peripheral or central, as it is produced from both 
peripheral and central sources. Establishing the specific contribution 
of each source of IL-6 to the development of the disease has been one 
of the top priorities of many investigation groups. 

Hidalgo, et al. demonstrated that mice with astrocyte-driven IL-6 
production did not develop classical EAE with leukocyte infiltration 
and demyelination of the spinal cord, but instead, they redirected 
the response to the cerebellum, suffering severe ataxia while mice 
expressing only astrocyte-driven IL-6 production (GFAP-IL6-IL-6 
KO mice) were not resistant to EAE like total IL-6 KO, instead, they 
developed the same cerebellar EAE symptomatology as GFAP-IL6 
mice [21]. Additionally, adoptive transfer of Tcell lines from IL-
6+/+ mice induced EAE in the mice with the intact IL-6 gene but less 
in the IL-6 KO mice, indicating that not only the encephalitogenic 
Tcells, but also local IL-6 in the brain, mediates the disease [18]. As 
astrocytic IL-6 have a key role in neuroinflammation [26,27] and 
astrocytes are the most abundant glial cell in the CNS, astrocytic IL-6 
is an ideal candidate to be assessed. Mice lacking astrocytic IL-6 (Ast-
IL-6 KO mice) exhibit a number of altered behaviors under normal 
(basal) conditions, including changes in activity, anxiety and learning 
[28,29]. It has been recently demonstrated that in contrast to results 
in total IL-6 KO mice, astrocytic-specific IL-6 deficiency is unable 
to prevent typical signs of EAE induction and has no prominent 
neuropathological effects. However, a delay in the onset of clinical 
signs was observed in Ast-IL-6 KO females, with fewer inflammatory 
infiltrates, decreased demyelination and some alterations in gliosis 
and vasogenesis compared to controls [30].

Majority of work has been done to characterize the role of local 
IL-6 in EAE but the CNS response to IL-6 is another critical issue to 
assess. Although trans-signaling appears to have a key role in EAE 
induction [23] it is extremely difficult to restrict the study only to 
central trans-signaling. However, mice with simultaneous astrocyte-
driven production of both IL-6 and sgp130 (specific inhibitor of 
IL-6 and sIL6-R complex and thus the trans-signaling pathway) 
are expected to be a promising candidate to elucidate central trans-
signaling role in EAE, as this model has already demonstrated to 
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Three decades after its discovery by Kishimoto, et al [1], and 

this cytokine has been mentioned in more than 100.000 articles, 
10.000 only in the last year, proving that it hasn’t lost any piece of 
interest. Interleukin 6 (IL-6) is a cytokine so pleiotropic that it has 
caused confusion to researchers since the very beginning. Tadamitsu 
Kishimoto originally characterized it in 1985 as B-cell differentiation 
Factor (BSF-2) [1] after speculating that T cells must produce certain 
factors that induce growth and differentiation of B cells into antibody-
producing cells [2]. Other labs were studying what was presumed 
unrelated growth factors at the time. These factors had several names 
and functions, interferon b2 [3,4], hybridoma growth factor [5], 
hepatocyte-stimulatory factor [6], cytotoxic T-cell differentiation 
factor [7], b2-fibrinogen [8], amyloid protein, haptoglobin and 
hemopexin, to name a few [9]. When IL-6 was cloned, it was clear that 
these seemingly different factors were the same molecule, highlighting 
many different IL-6 activities, not limited to B cell immunology. It 
is now considered a highly multifunctional cytokine involved in the 
regulation of the immune response, inflammation, hematopoiesis, 
regeneration, metabolism, endocrine and nervous system [10]. 

A special feature of IL-6 signaling is the existence of two different 
signaling pathways. In the classic one, IL-6 binds to its membrane 
bound IL-6 Receptor (mIL-6R) which has a transmembrane and 
intracellular region but its binding does not lead to signaling. The 
complex of IL-6 and IL-6R associates with a second protein, gp130, 
which thereafter dimerizes and initiates intracellular signaling [11]. 
IL-6R presence is restricted to few cell types including hepatocytes, 
leukocytes [12] and in some brain regions. Cells, which do not 
express IL-6R, cannot respond to the cytokine via. this pathway. 
However, in the more recently discovered trans-signaling pathway, 
IL-6 binds to a soluble form of the Receptor (sIL-6R), containing only 
the extracellular region and the complex binds to gp130 signaling 
subunits. As gp130 is ubiquitously expressed, trans-signaling 
confers IL-6 responsiveness to virtually all cells in the body, even 
the ones lacking IL-6R [13]. The sharing of gp130 partly explains the 
redundancy of the actions of these cytokines.

IL-6 plays a major role in the transition from innate immunity 
to acquired immunity [14] and it is implicated in the pathogenesis 
of numerous autoimmune disorders in humans, including Multiple 
Sclerosis (MS) [15,16]. Experimental Autoimmune Encephalomyelitis 
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counteract astrocyte-driven IL-6 in basal situations [27]. Regarding 
the role of IL-6 classic pathway in CNS, different cell populations 
must be studied, animals with lack of astrocyte-derived IL-6 
membrane receptor have been created and initially characterized in 
basal conditions [27] and they might provide some answers when 
challenged with EAE to assess if they are capable of increasing clinical 
EAE’s symptoms, as it has already been shown for immunized mice 
lacking cell surface expression of astrocyte-derived gp130 (GFAP-Cre 
gp 130 KO); which not only developed chronic EAE, but also showed 
a significantly more severe symptomatology with worse recovery 
rate, mainly because of increased astrocyte apoptosis, increased 
numbers of CD4 T cells in the CNS and increased demyelination 
[31]. Increased severity is expected to be much more obvious in this 
GFAP-gp130 KO than in KO for specific cytoquines because lacking 
gp130 receptor impairs signal transducing of nearly all IL-6 cytokines 
family, not only IL-6, being therefore more difficult to compensate. 
As GFAP-Cre also affects a subpopulation of neurons, this group 
decided to delete gp130 in neurons to assess whether astrocytes or 
neurons were responsible for aggravation of EAE in GFAP-Cre gp130 
KO mice, showing that only the absence of gp130 on astrocytes, but 
not on neurons, was the responsible for the increased susceptibility 
phenotype [31]. They further demonstrated that diminished activation 
of the gp130-SHP2/Ras/ERK pathway reproduced all pathological 
features observed in GFAP-Cre gp130 KO mice, including astrocyte 
loss, lack of Astrogliosis, a significantly more severe clinical course, 
increased T-cell infiltration, and severe demyelination; while mice 
with intact gp130-SHP2/Ras/ERK signaling but impaired STAT 
activation in astrocytes developed a similar clinical course compared 
to floxed controls and decreased compared to GFAP-Cre gp130 
KO and GFAP-Cre gp130-SHP2/Ras/ERK KO, due to an astrocyte-
dependent reduction of autoimmune t cells in the CNS [31]. 

IL-6 has also a major role in Th17 cell differentiation from naive 
CD4+ T-cells [32]; particularly in the EAE model [33,34]. Moreover, 
showing the importance of in filtrating cells in EAE pathology, EAE-
resistant IL-6 KO mice demonstrated a deficiency in Th17 cells 
infiltrated in the CNS [35]. When responsiveness to IL-6 is eliminated 
only in T helper cells there is resistance to EAE, as IL-21 pathway is 
intact but not active in the absence of IL-6 [36]. Th17 cells produce 
IL-17 (among other cytokines) which enhances IL-6 production by 
astrocytes, which in turn induces differentiation of Th17, cells in a 
positive feedback loop between IL-17 and IL-6 via. activation of NF-
kB and STAT-3 [37]. As Ast-IL-6 KO mice are not resistant to EAE 
induction, finally reaching the same score as WT, one can venture to 
say that astrocyte-derived loop is not necessary for the development of 
the disease as it is probable that neuronal, endothelial and microglial 
IL-6 allow this positive feed-back between IL-17 and IL-6. Now the 
efforts are directed to assess the role of IL-6 expression from other 
brain populations and to further characterized the inflammatory 
response in these models. After thirty years of study, the relevance of 
IL-6 is still growing.
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