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Abstract

Varicella zoster virus infections can cause can cause serious complications 
that carry significant morbidity and mortality. The hematological complications 
of VZV infections can range from transient cytopenias to severe aplastic 
anemia that may require allogeneic hematopoietic stem cell transplantation. 
On rare occasions, these infections have been reported to be associated with 
increased risk of developing lymphoid malignancies and solid tumors. On the 
contrary, there is growing evidence showing certain beneficial effects of the 
virus in immunocompromised individuals and these effects may be translated 
into stimulation of bone marrow function, prolongation of overall survival, and 
specific antitumor effects.

In this review which gives particular attention to consequences of varicella 
zoster virus infection in patients with bone marrow failure, hematologic 
malignancy and recipients of stem cell transplantation, the following aspects 
of the virus will discussed: epidemiology, pathogenesis, clinical consequences, 
management of infections; bone marrow microenvironment and stress-
induced hematopoiesis; cells implicated in the pathogenesis of the virus such 
as: mesenchymal stem cells, dendritic cells, natural killer cells, T-cells and 
mononuclear cells; the involved cellular proteins such as open reading frames, 
glycoproteins, promyelocytic leukemia protein, chaperons, and SUMOs; 
extracellular vesicles, exosomes, and micro-RNAs; as well as signaling 
pathways, cytokines, chemokines, and interferons that are implicated in the 
pathogenesis of VZV infections.
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Primary VZV infection (chickenpox) occurs in childhood 
then the virus becomes latent in the nerve ganglia till it becomes 
reactivated decades later to cause Herpes Zoster (HZ) which is 
manifested by painful skin eruption with characteristic dermatomal 
distribution [1,9-12]. Reactivation of VZV is usually predisposed to 
by immunosuppression due to: old age; diabetes mellitus; chronic 
obstructive airway disease; end-stage renal disease; Hematologic 
Malignancies (HMs); solid tumors; autoimmune diseases; 
immunosuppressive therapies; trauma; cytotoxic chemotherapy; 
Hematopoietic Stem Cell Transplantation (HSCT), and Solid Organ 
Transplantation (SOT) [9-12].

Risk Factors and Epidemiology
The risk factors for VZV infections include: (1) old age; (2) 

hereditary predisposition such as: inborn errors of RNA polymerase 
III, certain genetic mutations such as: GATA2, DOCK 2, DOCK 
8, IFNGR1, and TYK2, as well as genetic variation in the HLA 
region such as HCP5; (3) Immunodeficiency caused by: HMs such 
as leukemia, lymphoma, and multiple myeloma; solid tumors; 
HSCT; SOT; immunosuppressive agents including corticosteroids; 
cytotoxic chemotherapy; novel therapies and monoclonal antibodies 

Introduction to Varicella Zoster Virus 
Infections

Varicella Zoster Virus (VZV) is a double stranded DNA virus 
that belongs to the alpha group of herpes viruses [1-4]. It is a human 
neurotropic virus, which is highly contagious, and it is an exclusively 
human pathogen and this makes is extremely difficult to find an 
animal model for the virus [5-7]. VZV genome, which is the smallest 
among herpes viruses, has 74 Open Reading Frame (ORF) proteins 
[1-4]. The genome consists of 2 main coding areas, one long segment 
and one short segment, each of which is flanked by internal repeat 
and terminal repeat sequences [2-4]. The virion is composed of an 
icosahedral nucleocaspid; that harbors the DNA genome; surrounded 
by a tegument layer, which is covered by a lipid envelope that has 
glycoprotein spikes [1-4]. During its evolution, the VZV genome has 
lost almost all the genes that are not essential for its survival [3]. The 
relatively small genomes and the high proliferation rates allow viruses 
such as VZV to accumulate mutations that continuously present the 
host with new challenges. As a consequence, viruses either escape 
detection or modulate host physiology often by redirecting cellular 
pathways to their own advantage [8].

Review Article

Varicella Zoster Virus Infections in Patients with 
Hematologic Malignancies and Bone Marrow Failure and 
in Recipients of Hematopoietic Stem Cell Transplantation
Al-Anazi  KA1*, Al-Jasser AM2 and Al-Anazi WK3

1Department of Hematology and Hematopoietic Stem Cell 
Transplantation, Oncology Center, Saudi Arabia
2Department of Research and Studies, Ministry of Health, 
Saudi Arabia
3Department of Pathology, King Fahad Specialist 
Hospital, Saudi Arabia

*Corresponding author: Khalid Ahmed Al-Anazi, 
Consultant Hemato-Oncologist and Chairman, 
Department of Hematology and Hematopoietic Stem Cell 
Transplantation, Oncology Center, King Fahad Specialist 
Hospital, PO Box: 15215, Dammam 31444, Saudi Arabia

Received: October 24, 2019; Accepted: November 20, 
2019; Published: November 27, 2019



Austin Hematol 4(2): id1027 (2019)  - Page - 02

Al-Anazi  KA Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

such as thalidomide, lenalidomide, bortezomib, rituximab, and 
alemtuzumab; human immunodeficiency virus; diabetes mellitus; 
end-stage renal disease; collagen vascular disorders such as systemic 
lupus erythromatosis; and (4) use of statins, exposure to sunlight or 
immunotoxins, mechanical trauma, and psychological stress [13-
42]. The following 4 geographical genotypes were initially identified: 
genotype A in Africa and Asia, genotypes B and C in North America 
and Europe, and genotype J in Japan and South Korea [43,44]. 
However, the recent use of single-nucleotide polymorphism as well as 
restriction fragment length polymorphism has allowed identification 
of the following new VZV genotypes: E1, E2, M1, M2, M3, M4, VI, 
VII, VIII, and IX in various geographical locations [43-52].

Varicella is an endemic disease in most parts of the world. 
However, the introduction of vaccination against varicella in many 
countries has resulted in a substantial decrease in the incidence of 
chickenpox in young children [53-58]. The epidemiology of VZV 
infections is usually influenced by the following factors: age, gender, 
season and climate, geographic location, level of immunity, history 
of contact with infected individuals, and history of vaccination [54-
61]. The following additional factors influence the incidence of VZV 
infections in patients with HMs, and BM failure and in recipients of 
HSCT: the type of HM; the cytotoxic chemotherapy, immunotherapy 
or novel therapy administered; the type of HSCT offered; 
complications of HSCT particularly GVHD; acyclovir prophylaxis 
and its duration; as well as CD4+ and CD8+ cell counts [17,62-66].

Pathogenesis of VZV Infections
Primary VZV infection causes viremia in T-lymphocytes and 

viremia causes the characteristic skin eruption [67,68]. Later on, the 
virus migrates retrograde into dorsal root ganglia to establish latency. 
VZV reactivation from dorsal nerve ganglia causes antegrade travel 
of the virus to induce the dermatomal part of HZ infection [67-
69]. VZV is a highly fusogenic virus. Fusion of VZV-infected cells 
is a consequence of virally expressed glycoproteins and it permits 
entry of VZ virion into the intracellular cytoplasm [70]. Cell-to-
cell fusion induced by VZV infection occurs among fibroblasts and 
keratinocytes during formation of skin vesicles in both chickenpox 
and HZ infections [71-78]. In classical human infection, VZV 
rarely infects dividing cells such as skin fibroblasts, differentiated 
keratinocytes, mature T-cells, and neurons. However, the virus can 
productively infect these cells and use their machinery to replicate 
the viral genome [72]. Both VZV-ORF 28 and VZV-ORF 29 genes are 
expressed during VZV lytic infection but only the latter is expressed 
in latently infected neurons [73].

Autophagy, self-eating which involves degradation of cytoplasmic 
constituents in lysosomes, is closely associated with VZV infection 
[3,74]. Unlike HSV, VZV genome has no inhibitors of autophagy [3]. 
VZV-induced autophagy facilitates VZV glycoprotein biosynthesis 
and processing [69]. During VZV infection autophagy is up-regulated 
and autophagic flux is increased, while inhibition of autophagy leads 
to a marked reduction in viral spread. In addition, inhibition or block 
of autophagic flux may yield higher VZV titers [75]. Modulation of 
protein acetylation via Histone Deacetylases (HDACs) is a critical 
regulatory factor during infection by herpes viruses [76]. Viruses 
have evolved a wide array of mechanisms to destroy HDAC functions 
[76,77]. Most viruses struggle to utilize the chromatin machinery of 

host cells to promote efficient lytic infection and to control persistent 
latent states [78]. Ultimately, epigenetic manipulation using DNA 
methyl transferase inhibitors and HDAC inhibitors may become 
novel epigenetic antiviral therapies [79].

Clinical Manifestations and Complications 
of VZV Infections

The clinical manifestations and complications of VZV infections 
include: (1) prodromal symptoms such as fever, malaise and local 
pain; (2) typical skin eruptions: vesicular eruption that spares limbs 
and mainly involves the face, head and trunk in chickenpox; while in 
HZ: the crops of skin lesions involve at least 1 dermatome, they are 
usually unilateral and commonly appear over chest, then trigeminal 
nerve distribution, and they may progress from papules to vesicles 
the crusts; (3)  lung involvement in the form of pneumonia which 
is particularly severe in adults; (4) nervous system complications 
include: postherpetic neuralgia; meningitis, cerebritis and 
encephalitis; vasculopathy: headache, fever, mental changes, transient 
ischemic attacks, and stroke; segmental weakness and radiculopathy; 
myelitis and myelopathy: progressive myelitis and spastic paraparesis; 
cranial neuropathies and giant cell arteritis; Guillain-Barre syndrome; 
and Ramsay Hunt syndrome; (5) eye manifestations include: acute 
retinal necrosis (ARN) and progressive outer retinal necrosis; 
scleritis; keratitis, cataract, corneal ulcers, scars and perforation; 
proptosis and exophthalmos; optic neuritis, optic atrophy, and 
papilledema; ophthalmoplegia: diplopia and ptosis (III, IV and VI 
cranial nerves); posterior uveitis, retinal detachment and blindness; 
(6) BM suppression and secondary malignancies; and (7) other 
complications: secondary bacterial infection of skin lesions; enteric 
complications;visceral and disseminated infection; osteonecrosis and 
spontaneous exfoliation of teeth; and radicular pain without skin rash 
(zoster sine herpete) [5,9,22,30,80-97].

However, in severely immunocompromised individuals: atypical 
skin eruptions and disseminated infection in the absence of skin 
lesions may occur because pre-existing antibody does not prevent 
VZV reactivation, but may contribute to decreased viral load thus 
resulting in mild clinical course . In this group of patients, mortality 
rates range between: 5% and 15% [22,98].

BM suppression and cancers associated with viral 
infections and VZV

Peripheral blood cytopenia is the hematological hallmark of septic 
shock [99]. In addition, viruses can have tremendous impact on the 
hematopoietic process and the consequences of viral infections on the 
BM include: aplastic anemia, variable cytopenias, hemophagocytic 
lymphohistiocytosis, lymphoproliferative diseases, and a variety 
of other cancers [87,88,100,101]. Examples of the viruses that can 
have adverse effects on BM function are: Epstein-Barr Virus (EBV), 
Cytomegalovirus (CMV), VZV, Herpes Simplex Virus (HSV), 
Parvovirus B-19, Human Immunodeficiency Virus (HIV), hepatitis A 
and C viruses, and dengue virus [9,87-89]. The mechanisms involved 
in the adverse consequences of viral infections on the BM include: 
direct viral infection of HSPCs, viral recognition of HSPCs, indirect 
effect on HSPCs induced by inflammatory mediators, and the role of 
BM microenvironment on hematopoiesis induced by viral infection 
[87,102-105]. VZV infections have been reported to cause: transient 
pancytopenia, aplastic anemia that may require allogeneic HSCT, 
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and an increased risk of developing solid tumors as well as lymphoid 
malignancies [30,87,90-97].

Laboratory Diagnosis of VZV Infections
The diagnosis of VZV infection is usually made on clinical 

grounds based on the presence of the characteristic skin eruptions 
of chickenpox or HZ [3,68,106]. To confirm the diagnosis of VZV 
infection, the following additional diagnostic techniques may be 
needed: (1) virus isolation by culture which carries a low yield rate; 
(2) serology using Enzyme-Linked Immunosorbent Assay (ELISA); 
(3) direct fluorescent antibodies on scrapings obtained from active 
skin lesions; and (4) real-time polymerase chain reaction (RT-PCR) 
which has higher sensitivity than serological assays [3,68,106].

Acyclovir resistance of VZV infections has been reported on rare 
occasions in immunocompromised individuals. Drug resistance can 
be determined by genetic testing [107-109]. Ultra-deep sequencing, 
after initial detection of drug resistant mutations by Sanger 
sequencing, can be used in immunocompromised hosts [110].

Treatment, Vaccination and Antiviral 
Prophylaxis
Treatment of VZV infections

The available therapies for VZV infections include acyclovir, 
which has been the standard of care for long time; valaciclovir; 
famciclovir; bromovinyl deoxyuridine or brivudine; and Bicyclic 
Pyrimidine Nucleotide Analogues (BCNAs) [9,111-114]. In 
immunocompromised individuals, it is recommended to administer 
high-dose acyclovir Intravenously (IV) for a total duration of 
7 to 10 days [9,13,113,114]. Brincidofovir can be used in the 
treatment of acyclovir-resistant disseminated VZV infection in 
immunocompromised patients such as recipients of HSCT having 
GVHD [115]. In addition, IV and intravitreal foscarnet can be used 
in the treatment of acyclovir-resistant Acute Retinal Necrosis (ARN) 
caused by VZV infections [116-118]. BCNAs are not active against 
VZV strains that are resistant to acyclovir or brivudine and that bear 
mutations in the viral thymidine kinase gene. Hence, they are more 
potent against clinical isolates of VZV than acyclovir or brivudine 
[112].

The other new therapeutic agents for the treatment of VZV 
infections include: (1) the novel anti-VZV compound (35 B2 
derivative of pyrazolo-1,3,5-triazin-4-one) can inhibit both acyclovir-
resistant and acyclovir-sensitive strains of VZV by targeting herpes 
virus major capsid protein and inhibiting normal capsid formation; 
(2) aryl bicyclic nucleoside analogues such as FV-100; (3) BCNAs as 
various types of these agents have been found to be promising future 
therapies for VZV infections; and (4) bicyclic aryl furano pyrimidines 
[111,118-123]. For Post-Herpetic Neuralgia (PHN), gabapentin as 
well as local and systemic analgesics are usually prescribed [113,124-
126].

VZV vaccines
There are two types of VZV vaccines: (1) varicella vaccines such 

as varilrix, varivax, and the combined measles, mumps and rubella 
and varicella vaccine, all of which contain live-attenuated oka strain 
of VZV; and (2) HZ vaccines that include zostavax, and HZ/su 
[69,127,128]. Zostavax contains the live attenuated VZV oka strain 

and it is given as one injection subcutaneously. It has overall efficacy 
of 51.3% and it reduces the incidence of HZ by 51% within a 3 year 
period [69,127,128]. HZ/su is a subunit vaccine candidate that has 
recently shown improved efficacy in prevention of HZ in 2 phase 
III clinical trials. It is non-live, recombinant subunit glycoprotein 
E combined with adjuvant ASO1. It is given intramuscularly twice 
and it is recommended for immunocompetent individual’s ≥ 50 
years with overall efficacy of 97.2% [69,127,128]. Post exposure 
immunoglobulin prophylaxis with ZariZIG is usually administered 
to individuals having recent contact with patients having active VZV 
infections [127,129].  

The main indications of VZV vaccination include: post-exposure 
prophylaxis, individuals ≥ 50 years of age, and health care providers 
[6,128,129]. VZV vaccination is traditionally contraindicated in the 
following groups of patients: patients having HMs and solid tumors 
particularly those receiving cytotoxic chemotherapy or novel agents; 
recipients of HSCT or SOT receiving immunosuppressive therapies; 
patients having autoimmune treated monoclonal antibodies; patients 
with acquired immunodeficiency syndrome; patients receiving long-
term corticosteroid therapy; and individuals having active VZV 
infections [6,129,130].

Despite the rare reports of breakthrough VZV infections 
that may become disseminated and life-threatening particularly 
in immunocompromised hosts, VZV vaccines including the 
live-attenuated ones are generally safe and effective even in 
immunocompromised individuals such as: recipients of HSCT 
and SOT;  patients with HMs and solid tumors; patients with 
diabetes mellitus, autoimmune disorders and renal disease; elderly 
individuals; patients receiving corticosteroid maintenance therapy; 
and individuals with history of HZ infection [129,131-148]. 

Prophylaxis against reactivation of VZV infections
Reactivation of VZV infections may be encountered in patients 

with various HMs and in recipients of autologous as well as allogeneic 
HSCT [41,64,149-151]. Reactivation of VZV infections in these 
immunocompromised patients may be associated with serious 
complications such as disseminated infections that carry significant 
morbidity. Additionally, mortality rates may reach 34% [41,64,66,149-
152]. Therefore, in order to prevent complications of VZV infections 
in these patients, prevention of reactivation of VZV infections 
particularly in patients with with MM, low lymphocytic count, and 
those on long-term corticosteroid therapy is needed [41,64,66,149-
153]. Consequently, acyclovir prophylaxis is recommended in 
patients with HMs receiving intensive chemotherapy or novel agents, 
and in recipients of autologous as well as allogeneic HSCT [64-
66,149-151,154].

Initially, the trend was to give acyclovir prophylaxis for up to 
6 or 12 months in recipients of autologous and allogeneic HSCT 
respectively [64,65,152,153]. Nowadays, the recent literature is in 
favor of administering acyclovir as antiviral prophylaxis for periods 
of time longer than one year in HSCT recipients [64,65,149,151-153]. 
Several retrospective studies have shown that extended acyclovir 
prophylaxis has been shown not only safe but also effective [149,153]. 
However, the benefits and safety of long-term prophylaxis with low-
dose acyclovir should be confirmed in large prospective trials, as 
long-term use of acyclovir may be associated with side effects as well 
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as evolution of drug resistance [65,153].

The Reported Beneficial Effects of Varicella 
Zoster Virus

VZV behaves differently from other herpes viruses as it 
differs from them in many aspects [1-4,9,70]. Recently, there 
has been growing evidence on the beneficial effects of the virus in 
immunocompromised hosts and these effects are translated into 
prolongation of Overall Survival (OS) [9,155]. The reported beneficial 
effects of the virus include: stimulation of bone marrow activity in 
patients with HMs and Bone Marrow (BM) failure syndromes, 
antitumor effects in various HMs and solid tumors, and association 
with Graft Versus Host Disease (GHVD) which has anticancer effects 
[9,13,156-161].

The positive effects of VZV on BM function and HMs
In a single center, retrospective case-controlled study that 

included 16 episodes of Varicella Zoster Virus (VZV) infection 
occurring in 14 patients with various types of HMs and BM failure 
syndromes subjected to various forms of immunosuppressive 
therapies, cytotoxic chemotherapy and HSCT, Al-Anazi K.A. et al 
reported an increase in white blood cell count, Hemoglobin (Hb) level, 
and Platelet (PLT) count starting approximately 6 weeks following 
VZV infection [9]. This stimulation of the 3 hematopoietic cell lines 
in the BM caused by VZV infections lasted for periods longer than 3 
years post-VZV infection. The study showed that VZV could behave 
differently from other members of the herpes group of viruses such 
as CMV and EBV and that VZV infection might cause stimulation 
of BM function starting 6 weeks following VZV infection and lasting 
for several years thereafter [9]. Al-Anazi KA. et al., postulated that 
immunological changes induced by VZV infection such as cytokine 
release could account for the stimulation of BM activity encountered 
following VZV infections [9].

In another single center retrospective study that included 191 
patients with Multiple Myeloma (MM) treated initially with cytotoxic 
chemotherapy, bortezomib-based or thalidomide-based therapy 
then subjected to high-dose melphalan followed by autologous 
HSCT, Kamber C. et al., reported that approximately 30% of these 
patients developed VZV infections either before or after HSCT and 
that VZV infections were encountered more frequently in patients 
with advanced stage of the disease, renal failure and relapsing MM 
[155]. Despite encountering VZV infections in patients with worse 
expected prognosis, the OS in patients who developed VZV infection 
was superior to that in patients who never developed the infection. 
There was no delay in neutrophil engraftment post-HSCT in patients 
infected with VZV and engraftment of PLTs occurred earlier in 
patients infected with VZV [155]. 

Recently, Al-Anazi K.A. et al reported reversal of Pure Red 
Cell Aplasia (PRCA) by VZV infection [13]. A patient with BM 
biopsy proven PRCA was initially treated with cyclosporine-A 
and prednisolone, but this treatment was discontinued due to 
intolerance reported by the patient. Two months after stopping 
immunosuppressive therapy, the patient developed localized HZ 
infection that was successfully treated with valaciclovir [13]. Six 
weeks after the VZV infection, Hb level started to increase gradually 
and the steady increase in Hb level continued until it plateaued about 

14 months following the VZV infection. A repeat BM biopsy showed 
resolution of the severe erythroid hypoplasia and regeneration of the 
erythroid precursors in the BM [13].

GVHD and its association with VZV
Immunosuppressive therapies, given to control GVHD, are 

associated with increased risk of infectious complications [10]. 
On the contrary, bacterial and viral infections can theoretically 
contribute to the elevation of inflammatory cytokines after allogeneic 
HSCT, ultimately leading to aggravation of acute GVHD [11,12]. 
Interestingly, several studies have demonstrated that VZV infection 
may trigger chronic GVHD following allogeneic HSCT [156-158]. 
GVHD is usually associated with graft versus tumor, leukemia or 
lymphoma, (GVT) effects and provided GVHD is of low-grade, it can 
translate into improvement in OS in patients with acute leukemia or 
lymphoma [162-164]. 

Oncolytic viruses and the rising role of VZV
Viruses can induce harm and disease with early and late 

complications that may be associated with significant morbidity and 
mortality in addition to the rare event of cellular transformation 
and evolution of cancer. On the other side, viruses may provide 
hope to effectively treat several serious medical illnesses [165,166]. 
Examples of the usefulness of certain viruses in the treatment of 
specific diseases include: use of viruses as vaccines; use of genetically 
engineered or naturally occurring viruses as anticancer agents in the 
setting of oncolytic virus therapy; use of viruses as vectors in: induced 
Pluripotent Stem Cells (iPSCs), gene therapy for various hereditary 
and acquired diseases, as well as CAR T-cell therapy [165-173]. 

Studies have shown that VZV is the only virus with consistent 
inverse association with glioma suggesting a protective effect of VZV 
against glioma [159-161]. Studies have also shown that: the protective 
effect of prior VZV against the tumor is stronger for high-grade 
disease glioma and this effect may be mediated by the VZV-specific 
T-lymphocytes; VZV exhibits an extrinsic oncolytic potential in 
malignant glioma cultures, thus making it a possible novel candidate 
for virotherapy in glioblastoma multiforme; and human MSCs are 
suitable for delivering VZV to the sites of tumor growth [159,160,174]. 
However, efficacy of oncolytic virotherapy in malignant glioma has 
the certain difficulties that need to be overcome [174].                      

Animal and Other Experimental Models for 
VZV

VZV is an exclusively human pathogen. Hence, VZV 
pathogenesis, latency, and reactivation are difficult to study 
[128,175,176]. Due to the cell-associated nature of the virus and the 
strict host-specificity of infection, our knowledge of host-pathogen 
interaction and VZV pathogenesis, latency and reactivation remains 
incomplete [128,175,177]. Development of more efficacious vaccines 
and antiviral therapies against VZV and better understanding of 
the host response to VZV infection are hampered by the scarcity 
of animal models that recapitulate all aspects of VZV infections in 
humans [128,175-178].

The following animal models have been used but with limited 
success: (1) guinea pig; (2) cotton rat; (3) Simian Varicella Virus 
(SVV) in Non-Human Primates (NHPs); and (4) the severe combined 
immunodeficiency-humanized mouse model [128,177,179-182]. 
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Recently, the following have been utilized to study the pathogenesis 
of VZV infections: normal human neuronal progenitor cells in 
tissue-like assemblies; terminally differentiated neurons; and sensory 
neurons generated from human iPSCs and human Embryonic Stem 
Cells (ESCs) [175,183-189]. Thus, numerous efforts have been made 
to develop adequate animal models of VZV infection with limited 
success because all aspects of VZV infection, latency and reactivation, 
as well as understanding VZV pathology will remain not only difficult 
but also incomplete without a suitable model [128,176].          

Bone Marrow Microenvironment and 
Hematopoiesis

The BM microenvironment is the domicile of Hematopoietic 
Stem Cells (HSCs) as well as the malignant processes that develop 
in the BM [189]. The BM niche or microenvironment has 2 main 
components: (1) cellular components such as MSCs, HSCs, and their 
derivatives; and (2) functional components that are composed of 
several growth factors and cytokines which regulate hematopoiesis 
[190-194]. The interaction between the niche constituents and HSCs 
maintain hematopoiesis [195]. HSCs which give rise to all blood 
cells are maintained and regulated by special microenvironment or 
niches in the BM cavity [196]. NOTCH signaling is crucial for HSC 
maintenance [191]. Distinct stromal or hematopoietic progenitor cells 
in the BM generate signals that regulate self-renewal, proliferation 
and trafficking of HSCs [197]. HSC niche supports steady-state 
hematopoiesis and responds to the changing needs during stress 
and disease [196]. The nervous system is an important regulator of 
HSC niche and it influences the development of stem cells [196]. 
Neural crest-derived MSCs have regulatory pathways that control 
hematopoiesis in the hematopoietic niche [198,199]. Dysregulation 
between neural and hematopoietic systems can contribute to disease 
[196].

Hematopoiesis is the process by which all mature blood cells are 
produced from stem cells to replace the cells that have completed 
their lifespan [191,198]. Hematopoiesis, a dynamic biological 
process that can be influenced by environmental factors such as 
infection or inflammation, is under tight control of a group of 
hematopoietic cytokines [200,201]. However, the same cytokines 
control basal as well as emergency hematopoietic cell proliferation 
[199]. Pro-inflammatory cytokines are fundamental regulators of 
hematopoiesis. However, there are differences in the roles of certain 
cytokines during fetal life and adulthood [202,203]. The different 
cytokines, chemokines, ligands, and signaling pathways that are 
involved in hematopoiesis, Hematopoietic Stem And Progenitor 
Cell (HSPC) proliferation and myeloid differentiation include: 
(1) cytokines, chemokines, interferons, and growth factors such 
as:interleukins (ILs): IL-1α, IL-1β, IL-3, Il-6, IL-18, IL-33; Interferons 
(IFNs): IFN- α, IFN-γ; tumor necrosis factor-α; colony stimulating 
factors; transforming growth factor-β; fibroblast growth factor; 
thrombopoietin; angiopoietin; lipopolysaccharide; and prostaglandin 
E2; (2) ligands such as: Flt3, FMS-tyrosine kinase 3, and Toll-like 
receptors  (TLRs); and (3) signaling pathways such as: NF-κβ, STAT3, 
and Wnt [200,203,204].

During pathogen exposure, hematopoiesis may yield a progeny 
in proportions that are different from those produced under steady-
state hematopoiesis [201,202,205]. In acute inflammation, IFNs, 

TNF, and lipopolysaccharide directly stimulate HSC proliferation 
and differentiation while in chronic inflammation, cytokine-signaling 
leads to HSC exhaustion and may cause evolution HMs [206]. 
Cytokines and ligands, which are produced during stress conditions 
such as infection, include: (1) IFNs; (2) TNF; (3) cytokines such as; 
Il-1α, IL-1β, IL-3, Il-6, IL-18, IL-23, mtDNA, HMGB1, SCF, and 
thrombopoietin; and (4) Flt-3 ligand [99,205,206]. However, certain 
cytokines that are produced during stress conditions have significant 
effects on HSCs in the BM [206].

The types of BM microenvironment responses to microbial 
products include: (1) emergency granulopoiesis caused by rapid 
mobilization of granulocytes and HSPCs from the BM to the peripheral 
tissues giving rise to short-lived cells such as neutrophils, basophils 
and eosinophils; (2) suppression or enhancement of erythropoiesis; 
(3) proliferation and differentiation of HSCs induced by type I IFNs; 
(4) enhanced output of innate immune cells; and (5) development 
of extramedullary hematopoiesis to compensate for the diminished 
BM hematopoietic progenitor cells during infection [100,206]. 
Pathogens disturb hematopoiesis through direct effect on HSCs 
by infection or microbial products; and indirect effects on the BM 
microenvironment [201]. Acute microbial infection elicits profound 
changes in hematopoiesis with alterations in the proportions of 
uncommitted progenitor cells. For example, sepsis is characterized by 
hyperactivity of the immune system manifested by overproduction 
of pro-inflammatory cytokines and chemokines followed by 
hypoactivity and neutropenia [201]. However, overproduction of 
pro-inflammatory cytokines due to chronic inflammation often 
causes hematopietic failure [201].

Cells Involved the Pathogenesis of VZV
Mesenchymal stem cells

MSCs are adult, non-hematopoietic, multipotent stromal 
progenitor cells that have the capacity of multi-lineage differentiation 
and self-renewal [207-212]. They can be isolated from BM, peripheral 
blood, umbilical cord blood, amniotic fluid, as well as adipose tissue. 
In addition, they have certain distinguishing features including the 
characteristic surface markers and they have immunomodulatory 
and immunosuppressive properties that enable them to have several 
therapeutic and clinical applications [207-209]. MSCs are major 
constituents of HSC niche and the BM microenvironment [195]. 
MSCs are the masters of survival and clonality as they interact with 
diverse immune cells and different cellular components of the BM 
microenvironment including normal cells, leukemic stem cells, and 
progenitor cells [210-213].

The emerging roles of BM-MSCs in host defense include 
production of cytokines, chemokines and Extracellular Matrix (ECM) 
proteins to support HSC survival and engraftment, augmentation of 
antimicrobial responses, and amelioration of injury caused by the host 
defense to the pathogen [209,212]. BM-MSCs function as a critical 
fulcrum providing balance by: promoting pathogen clearance during 
the initial inflammatory response, and suppressing inflammation 
to preserve host integrity and facilitate tissue repair [212]. MSCs, 
particularly placenta-derived MSCs and fetal membrane-derived 
MSCs, are highly susceptible to herpes viruses including VZV 
[209,214].
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In cancer, MSCs are a double-edged sword as they can: exert 
stimulatory effects on tumor development and have inhibitory effects 
on cancer cell growth and metastases [215]. MSCs have the following 
anticancer properties: (1) they can be engineered or modified to 
become carriers of suicide genes; (2) they can be employed as carriers 
of anti-angiogenesis factors; (3) cytokine gene expression can be 
induced in MSCs; and (4) engineered MSCs can be utilized to target 
cancer stem cells [216-218]. Studies have shown that several types 
of stem cells including BM-MSCs and NSCs can cross the BBB and 
reach tumors localized in the brain such as glioblastoma multiforme. 
Hence, MSCs can be utilized as means of cellular carriers to deliver 
cytotoxic genes or therapeutic agents for brain tumors [219-223].

Dendritic cells
DCs are BM-derived cells that are located in most tissues including 

the skin, blood, lymph and mucosal surfaces and form an essential 
interface between the innate sensing of pathogens and the activation 
of adaptive immunity [224,225]. They are potent antigen presenting 
cells that are critical in the initiation of successful primary antiviral 
immune responses to control and/or eliminate viral infections [225-
229]. Functions of DCs include inhibition and control of immune 
responses as well as bridging the innate and adaptive immune systems 
[224,229].

DCs use different pathways to present antigens to CD8 and CD4 
T-cells [228]. Mature DCs are permissive for VZV infection and DC 
infection can lead to transmission of the virus to T-lymphocytes in 
preparation for subsequent dissemination of the virus in the human 
body to cause disease [225,226].                                 

Natural killer cells
NK cells develop from common progenitors and differentiate 

from HSCs in the BM and their sources include: BM, peripheral 
blood, cryopreserved umbilical cord blood, human ESCs, iPSCs, in 
addition to various cell lines [230-232]. Human NK cells, the third 
population of lymphoid cells, represent the first line of defense against 
infections and tumors and they express specific surface markers, 
intracellular signaling molecules, and transcription factors [232-238]. 
Recently, it has been shown that NK cells exhibit many of the features 
associated with adaptive immunity including:  generation of long-
lasting memory cells, the ability to mount an enhanced secondary 
recall response to rechallenge, and having distinct gene regulatory 
functions [236,239].

NK cells play a major role in the immune response to certain 
malignancies by several mechanisms [236,237,240-243]. They play 
key roles in innate and adaptive responses through unique NK cell 
activation mechanisms during early host defense against viruses and 
tumors [231,236,241]. NK cells are attractive candidates for adoptive 
cellular therapy in: acute leukemia and solid tumors with either CAR-
engineered NK cells or combining NK cells with CD-16 binding 
antibodies or immune engagers; and allogeneic HSCT to protect 
against disease relapse by enhancing Graft Versus Leukemia (GVL) 
effect without causing GVHD [230,232,233,243-247].

NK cells play a major role in the immune response to certain viral 
infections by direct cytolysis or killing of virus-infected cells to rapidly 
control viral infection, and secretion of potent immune mediators 
such as IFN-γ and other cytokines [236,248-250]. NK cells can 

produce persistent memory in response to certain viral infections and 
they have multiple mechanisms to kill virus-infected cells through the 
engagement of extracellular death receptors, and through exocytosis 
of cytotoxic granules [238,239]. Productive VZV infection actively 
manipulates the phenotype of NK cells which have a potential role 
in VZV pathogenesis as they are implicated in controlling infections 
caused by VZV [251].

T-lymphocytes
It is well recognized that T-cell mediated immunity consists of 

CD4 and CD 8 effector and memory T-cells and that administration 
of varicella vaccine generates VZV-specific humoral and cellular 
immune responses [252]. VZV-specific T-cells and T-cell mediated 
immunity, which decrease with immunosuppression and advancing 
age, are essential for controlling VZV infections [252-255].

Infection with VZV induces cellular immunity that protects 
against reinfection and reactivation of the virus from the sites of 
latency [256]. CD4+ cytotoxic T-cells are essential in primary host 
response to acute varicella [257]. Live-attenuated varicella vaccines 
can induce VZV-specific memory cytotoxic T-cell responses 
comparable to those occurring in individuals with natural immunity 
[257]. VZV vaccination increases the magnitude of VZV-specific 
CD4+ T-cell responses [258]. So, the efficacy of VZV vaccines 
may be enhanced by eliciting robust CD4+ T-cell responses [259]. 
In recipients of T-cell depleted stem cell allografts VZV-specific 
T-cell immunity, which is essential to prevent VZV reactivation, 
can recover efficiently [260]. In recipients of HSCT: recognition of 
protective VZV-specific T-cell mediated immunity does not require 
disease development, and monitoring of VZV-specific cell-mediated 
immunity can guide antiviral prophylaxis [261].         

Mononuclear cells
VZV productively infects human Peripheral Blood Mononuclear 

Cells (PBMNCs) and monocyte derived macrophages. It induces an 
IFN-mediated Th1 reaction in PBMNCs and the infected PBMNCs 
then disseminate the virus to distal organs to produce clinical disease 
[262-267]. However, growth of VZV in human adult monocytes is 
incomplete and restriction of VZV growth by monocytes may play 
a role in defense against VZV infection [268]. In patients with VZV 
infection, VZV-DNA can be detected in human PBMNCs: (1) by 
RT-PCR during viremia and within 1-23 days after onset of the skin 
lesions, and (2) by in situ hybridization for 2-56 days after appearance 
of the skin eruption [265,266,269]. 

TLRs, the key components of the host innate recognition system, 
play a role in the inflammatory cytokine production by monocytes 
during VZV infection [266]. VZV specifically induces IL-6 in human 
monocytes via TLR2-dependent activation of the NK-κβ signaling 
pathway. Additionally, the cytokine response to VZV is species 
specific [266].                             

VZV Proteins, Cell Components and Cellular 
Processes
Open reading frames

Although approximately 80 proteins have been described 
to be produced in association with VZV infections: 74 ORFs, 3 
glycoproteins, 3 IE proteins, only 44 of these ORF genes are essential 
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for viral replication [2,4,71,269-272]. Also, VZV contains 5 unique 
ORF genes and it lacks 15 ORF genes that are expressed by HSV-1 
[48]. However, the most common ORFs are: ORF 1, ORF 2, ORF 4, 
ORF 10, ORF 13, ORF 21, ORF 23, ORF 29, ORF 32, ORF 47p, ORF 
54, ORF 57, ORF 61, ORF 62, and ORF 63 [2,4,71,270-272].

One complete cycle of VZV replication takes 9-12 hours and 
leads to a new generation of infectious VZV particles [71]. The 
expression of the 2 latency-related VZV genes, ORF 62 and ORF 63, 
is epigenetically regulated [273,274]. ORF 63 is a prominent gene 
product in productive VZV infection and has critical roles in latent 
infection and in VZV pathogenesis by aiding neuron and keratinocyte 
survival [274-276]. Expression of ORF 61 and ORF 62 occurs less 
than one hour after VZV infection of human fibroblasts [71].

ORF 21 is the first gene product expressed during latency [277]. 
ORF 7 is a novel VZV skin-tropic factor, which is essential for viral 
replication [278]. ORF 25 gene product is essential for protein 
interactions and VZV replication [279]. ORF 54 deletion mutant 
represents the first VZV encapsidation mutant that can serve as 
a platform for the isolation of portal mutants via recombination-
mediated genetic engineering and can provide a strategy for more 
studies on VZV portal structure and function [271]. VZV-ORF 47 is 
critical for replication of the virus in immature DCs and for spread 
of virus to other cells [228]. The protein coded by ORF 9, ORF 9p, is 
essential for viral replication by binding to cellular adaptor protein 
complex 1 [272,280].

Glycoproteins
The lipid envelope of VZV contains numerous glycoproteins 

that are needed for viral replication and pathogenesis [281]. VZV 
glycoprotein C activity facilitates the recruitment and subsequent 
infection of leukocytes, and enhances VZV systemic dissemination 
in humans [273]. Glycoproteins B and E, the major targets of VZV-
specific CD4+ and CD8+ T-cell reconstitution that occurs during 
VZV infection or reactivation following allogeneic HSCT, might 
form the basis for novel non-hazardous subunit vaccines suitable for 
immunocompromised hosts [270]. VZV glycoprotein M is essential 
for efficient cell to cell virus spread but not for virus growth [282].

Promyelocytic leukemia protein
The cellular protein, Promyelocytic Leukemia Protein (PML), has 

been identified recently [283,284]. Human PML protein is located 
on chromosome 15 and has 9 exons and ≥ 11 isoforms [285]. PML 
is an essential regulator of somatic cell programming and stem cell 
pluripotency and has diverse functions that regulate response to 
DNA damage, apoptosis, senescence, and angiogenesis [286-288]. It 
is a regulator of metabolic pathways in stem cell compartments and 
it has provided new strategies for controlling stem cell maintenance 
and differentiation [287]. For its action, PML recruits other proteins 
such as Sp100, Daxx, Small Ubiquitin-Like Modifier (SUMO)-1, and 
P53 [288].

Recently, there is a growing body of evidence supporting the 
impression that PML is a key regulator of cytokine signaling [289]. 
In addition, PML is involved in: cell death, senescence and antiviral 
defense and it is able to interact with various partners in the cell 
cytoplasm or in the nucleus [289]. PML, an IFN-inducible protein 
that is involved in restricting VZV replication, is a key organizer of 

large numbers of proteins that are able to be SUMOylated [285,290].

Chaperons
Chaperons are a diverse group of molecular proteins that 

function during homeostasis and stress conditions such as disease or 
infection [291]. Chaperons play critical roles in folding and refolding 
of protein chains, protein transport and translocation through 
membranes, degradation of proteins, and host-pathogen interaction 
during infection, and protein quality control [291,292]. ELISA-based 
tests, which are used to measure the plasma levels of chaperons, 
give information about the quantity or amount but not the function 
or activity of chaperons [291]. Molecular chaperons are required 
for the folding processes of many proteins and the core chaperone 
machinery consists of chaperonins and heat shock proteins [293]. 
The cell protein BAG3, a host chaperon, is specifically required 
for efficient replication of VZV [294]. Alteration of host chaperon 
activity is a novel means of regulating viral replication and targeting 
chaperones may become a new therapeutic modality for treating 
infections caused by drug resistant herpes viruses [294-296].                         

SUMO proteins and SUMOylation
Post-Translational Modification (PTM) of proteins allows 

cells to respond to internal and external stimuli [297]. The most 
studied protein modifications are: ubiquitination, phosphorylation, 
acetylation, methylation, and glycosylation [297]. PTMs contribute 
to gene regulation, epigenetics, differentiation, protein degradation, 
and tumorigenesis [298]. Since the first description SUMOylation in 
the year 1996, 4 SUMO isoforms have been characterized in humans 
[296,299,300]. SUMO proteins are essential for the normal function 
of all eukaryotic cells [301,302]. SUMOylation, a highly conserved 
and reversible PTM, is manipulated by viruses in order to modulate 
anti-viral responses, viral replication and viral pathogenesis [297-
301]. SUMOylation, a major regulator of protein function that plays 
an important role in a wide range of cellular processes, is carried out 
by a cascade of several enzymatic steps where SUMOs are implicated 
in the regulation of diverse cellular processes [297,300,301,303]. 
SUMOylation is an important mechanism regulating the activities 
of various proteins involved in: DNA replication and repair, 
chromosome packing and dynamics, genome integrity, nuclear 
transport, signal transduction, and cell proliferation [304].

SUMO-specific proteases are required for the maturation of 
SUMO precursors and the reversal of a wide range of cellular processes 
[297,298]. SUMO Ubc9 enzyme represents not only a leading target 
for viral proteins but also an attractive biomarker in the treatment of 
most viral-induced human pathologies [299]. VZV-ORF 61p, which 
appears to target substrates for potential degradation in a SUMO-
independent manner, is important in the infectivity of the viral DNA 
and it has much stronger affinity for SUMO-1 than SUMO-2 and 
SUMO-3 [298,300,302]. VZV-ORF 29 gene can be ubiquitinated and 
SUMOylated [305]. Tripartite motif proteins have been implicated 
in multiple cellular functions including antiviral activity and they 
rely mainly on their function as E3-ubiquitin ligases [302,306]. 
Identification and knowledge of virus-mediated PTM manipulation 
by viral analogs infiltrating ubiquitin/SUMo pathways will help in the 
development of future antiviral drugs and novel immunotherapies 
[297-299]. Thus, targeting SUMOs could represent a new therapeutic 
strategy against viral infections [307]. 
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microRNAs     
Micro-RNAs (miRNAs) have several functions that include 

regulation or modulation of gene expression; downregulation of 
target protein expression in cells; regulation and maintenance of 
numerous cellular physiological functions or processes; regulation 
of interaction between hosts and viruses; and inhibition of viral 
replication [308-311]. VZV encodes several miRNAs that regulate 
VZV infection in host cells [310]. The following circulating miRNAs 
have been detected in patients with VZV infection: miR-197; miR-
629; miR-363; miR-132; miR-122; miR-1906; miR-571; miR-1276; 
miR-1303; miR-943; and miR-661. Hence, these circulating miRNAs 
can be potentially used as biomarkers of active or latent VZV infection 
[309,312].

Extracellular Vesicles and Exosomes
Extracellular Vesicles (ECVs), nano-sized cell-derived particles 

that are released by most cell types, are potent vehicles of intercellular 
communication to transmit biological signals between cells and are 
characterized by a specific set of proteins, lipids and nucleic acids 
[313-316]. ECVs, which were initially considered as mostly cellular 
debris, are the key mediators of intercellular communication and 
they can be isolated from various biological fluids including blood, 
urine, cerebrospinal fluid, amniotic fluid, seminal fluid, and breast 
milk [313,315,316]. The 4 main types of ECVs are: exosomes, 
macrovesicles, apoptotic bodies, and oncosomes [313,315,317]. 
During viral infection, ECVs transport viral genomes into target cells, 
and intervene in cell physiology to facilitate viral infection [315]. 
MSC-derived ECVs may provide a new therapeutic option in: cell 
transplantation or gene therapy for different diseases particularly 
HMs and in immune regulation, tumor inhibition, and regenerative 
medicine [313]. 

Exosomes mediate intercellular communication through 
functional or biologically active proteins, lipids, and RNAs and they 
are implicated in normal physiological processes such as modulation 
of the immune system, metabolism, and neural development; and 
progression of several pathologies such as cancer, infection and 
neurodegeneration [316,318]. Exosomes are crucial components in 
the pathogenesis of viral infections [318]. Viruses including herpes 
viruses can manipulate exosomal pathways and VZV could utilize 
the alterations in host exosomes to: enhance spread of the virus, 
evade host immune surveillance, and elicit pathological effects 
within the host [319,320]. Exosomes are becoming critical mediators 
of viral infection-associated intercellular communication and 
microenvironment alterations [317]. They can be used as: biomarker 
of disease, and target for therapy in order to control or even eradicate 
viral infection and they can help to enhance immune responses of 
the host against pathogens by activating antiviral mechanisms. Thus, 
exosomes can be used as therapeutic agents to modulate immune 
responses [317-319].

Role of Cytokines in VZV Infections
Cytokines; that include chemokines, lymphokines, IFNs, ILs, 

and TNF; are low molecular weight extracellular polypeptides or 
glycoproteins that are synthetized by different immune cells such 
as T-cells, neutrophils and macrophages in response to infection, 
inflammation or trauma [321]. Cytokines are important mediators of 

immune response and they play an essential role in the expression of 
cell mediated immunity [321,322].

On the first infection with VZV, induction of CD4 and CD8 
T-cells is followed up by generation of VZV IgM, IgG, and IgA 
antibodies, while memory immunity to VZV is characterized by 
persistence of: IgA antibodies, CD4 helper T-cells and cytotoxic 
T-cells [323,324]. The following cytokines are expressed or elevated in 
the serum following VZV infections: Il-6, IL-10, IL-8, IL-17, IL-4, IL-
12, IL-21, IL-23, and IL-1β as well as IFN-α and IFN-γ [266,322-331]. 
However, expression of IFN-α and IFN-β is upregulated in the early 
phases of VZV infection then IFN expression decreases significantly 
during the late phases of infection [324,327].

Specific complications of VZVinfections have specific cytokine 
profiles: (1) in patients with PHN, the serum levels of autoantibodies 
against: IFN-α, IFN-γ, GM-CSF, and IL-6 have been found to 
be markedly elevated [332]; (2) in patients with myelopathy and 
encephalopathy have elevated Cerebrospinal Fluid (CSF) levels of 
Matrix Metalloprotease (MMP)-3, MMP-8 and MMP-12, while 
patients with meningitis have significant increase in CSF levels of 
MMP-9 [333]; (3) in patients with VZV associated vasculopathy and 
giant cell arteritis there is: upregulation of IL-6, upregulation of IL-6 
and VEGF-A, while programmed death-ligand 1 is downregulated 
[326]; and (4) in patients with ARN, the following cytokines are 
significantly elevated: IL-6, IL-8, IL-10, IL-18, IL-15, MIF, MCP-1, 
Eotoxin, IP-10, sICAM-1, and sVCAM-1, while low levels of the 
following cytokines have been encountered: IL-2, IL-4, IL-13, and 
IFN-α [334,335]. However, characterization of cytokine, chemokine 
and growth factor responses during different stages of VZV infection 
may facilitate the development of effective immunotherapeutic as 
well as vaccine strategies [336].

Signaling Pathways Involved in VZV 
Infections

The following signaling pathways are activated in VZV infections: 
Janus Kinase/Signal Transducer And Activation Of Transcription 
(JAK/STAT) pathway which is the most studied signaling pathway; 
c-Jun N-terminal Kinase (JNK) pathway; Extracellular Signal-
Regulated Kinase (ERK/MEK) pathway; Phosphatidylinositol 
3-kinase (PI3K/Akt) pathway; NK-κβ pathway; Mitogen-Activated 
Protein Kinase (MAPK) pathway; Wnt-Wingless pathway; and 
Cyclic-AMP Response Element Binding Protein (CREB) pathway 
[227,337-344].             

The induction of the JAK/STAT pathway by IFNs leads to the 
upregulation of IFN-stimulated genes that are able to rapidly kill 
viruses within infected cells [345]. VZV downregulates STAT1 and 
JAK2 protein levels in virus-infected cells [346]. Activation of STAT3, 
a key regulator in inflammation and tissue regeneration, is critical 
for the life cycle of VZV because VZV skin infection is necessary for 
viral transmission and persistence in humans [347]. Survivin, which 
is abundant in cancers and tissues that contain proliferating cells, 
mediates a necessary virus-enhancing effect of STAT3 activation on 
VZV [347].

The ERK/MEK signaling pathway is influenced by VZV and 
the PI3K/Akt signaling pathway has an essential role in successful 
replication of VZV [338,340]. In addition, JNK pathway plays 
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an important role in lytic infection and reactivation of VZV in 
physiologically relevant cell types.  MAPKs play a role in VZV infection 
of non-neural cells with distinct consequences in different cell types 
[339]. ORF-61 has an important role not only in the regulation of 
MAPK signaling pathway but also in VZV gene expression [344]. 

CREB, a factor involved in the regulation of several cellular 
processes, is activated upon infection of T-cells with VZV. CREB 
activation is important for VZV skin infection [341]. E3 ubiquitin 
ligase domain of ORF-61 is required to modulate NF-κβ signaling 
pathway, which is inhibited by VZV infection [228].

Conclusions and Future Directions
Apparently and as clearly shown in different sections of this 

review, VZV differs from other herpes viruses and it has the following 
peculiar features: having the smallest genome; losing almost all the 
genes that are not essential for its survival; being highly fusogenic 
and cell-associated; having no inhibitors of autophagy; being an 
exclusively human pathogen; having a species-specific and disease-
specific cytokine profiles; and having an inverse relationship with 
glioma [1-5,7,13,74,159,348,349]. On the clinical side, the virus 
has shown BM stimulatory effects and several antitumor actions in 
patients with BM failure and HMs in addition to being associated with 
GVHD in recipients with HSCT [9,13,155-158,160,161,174,348,349].

The reported beneficial effects of VZV are rather outstanding 
and have translated into improved outcome and prolongation of OS 
in immunocompromised patients infected with VZV. These results 
should encourage researchers and scientists to give this potentially 
useful virus the attention it deserves. The positive effects of VZV on 
BM activity and on diseases such as BM failure syndromes, HMs, and 
solid tumors that occur through direct and indirect immunological 
mechanisms merit thorough investigations.  The virus itself, modified 
or engineered versions of the virus or constituents obtained from 
the serum of patients infected with VZV may ultimately become 
extremely valuable therapeutic modalities in the management of 
patients with various BM failure, HMs, and solid tumors.  Explanation 
of the stimulatory effect exerted on the three cell lines in the BM that 
is subsequently translated into increases in all blood counts as well 
as the antitumor effects of the virus may be provided by one or more 
of the mechanisms outlined or may be due to a new mechanism that 
needs to be elucidated.
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