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Abstract

Osteoarthritis is the most prevalent rheumatic disorder affecting the 
musculoskeletal system; osteoarthritis is a degenerative form of arthritis 
that results in gradually breakdown of joint cartilage; osteoarthritis can be 
also viewed as an inflammatory disease. Currently applied therapies consist 
of physical therapy, oral medication, intra-articular injections and surgical 
interventions, their main goal being to reduce pain and improve function and 
quality of life. Intra-articular administration of drugs has potential benefits 
in osteoarthritis treatment because it minimizes systemic bioavailability and 
side effects associated with oral administration of drugs and enhances their 
therapeutic effect in the joint. However, the residence time of the drug is short 
and several drug delivery systems were explored to obtain a sustained release. 
This review is focused on the use of chondroitin sulfate as bioactive molecule in 
the treatment of osteoarthritis and the liposome ability as suitable drug delivery 
system for chondroitin sulfate. 
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This review highlighted the advantages offered by liposomes 
as i.a. delivery system in treatment of OA. Data regarding the 
physico-chemical properties, biocompatibility, anti-inflammatory 
and regenerative potential of the liposomal formulations of CS are 
summarized. It is also discussed the trend in i.a. therapy of arthritis 
using this promising technology.

Intra-Articular Therapy -Advantages and 
Limits

Intra-articular (i.a.) therapy improves drug delivery to joint 
cartilage and thus, it can increase the therapeutic efficacy in OA 
treatment by minimizing systemic bioavailability and side effects 
associated with oral administration. A very well structured review 
of Evans et al. presented the progress, clinical performances and 
advantages of i.a. therapy of arthropaties [16]. Being discrete cavities, 
most diarthrodial joints are well suited for the local drug delivery via 
i.a. injection. The advantages offered by i.a. delivery of therapeutics 
in diarthrodial joints are also presented by Chen & Yang. They have 
noticed the importance of delivering drugs not just on the surface 
of the articular cartilage, but also into its matrix, in order to obtain 
a deeper zone treatment. Moreover, it should be fully considered 
that the drug biodistribution following delivery is quite different in 
i.a. administration from systemic administration or local injection 
into other tissues or organs. Many corticosteroid formulations are 
available for i.a. injection in OA and several studies have compared 
their effectiveness in OA. The conclusion was that they offer a short-
term solution for a chronic problem, reducing pain in the knee for 
at least 1 week [17]. An alternative treatment for joints affected 
by OA that have not responded to NSAIDs or analgesics is the i.a. 
administration of natural bioactive substances that can influence 
the pathophysiology of OA joints, such as lubricin, also known as 
proteoglycan 4 [18] and hyaluronate, a component of the cartilage 
extracellular matrix [19].

Background
Osteoarthritis (OA) is a degenerative disease, but not a systemic 

one, characterized by progressive loss of articular cartilage, 
subchondral bone sclerosis and osteophyte formation, changes 
in the synovial membrane and increased volume of synovial fluid 
with altered coefficient of friction [1-3]. In some aspects, it can be 
also viewed as an inflammatory disease, leading to chronic pain 
and decrease of life quality [4]. Presently, there is no prevention or 
efficient treatment that can stop the pathological processes involved 
in OA progression [5], since available treatments are directed to 
symptoms, pain relieve and function regain [6]. The administration 
of nonsteroidal Anti-Inflammatory Drugs (NSAIDs), analgesics 
compounds [5] and corticosteroids [7,8] is achieved through oral, 
parenteral or intra-articular (i.a.) route, targeting to reduce or revise 
joint damage and inflammation.

The oral drug administration has major disadvantages, such as 
limited bioavailability and risk of side effects. As OA has a localized 
nature, i.a. administration of drugs provides the opportunity to 
improve the treatment by local depot formation and prolonged 
drug action [9]. To treat local diseases, like joint disorders, i.a. 
route is very useful. However, the efficacy of i.a. administration of 
different anti-inflammatory bioactive molecules (e.g., glycoproteins, 
proteoglycans) is limited due to their poor stability and delivery in the 
harmful biological milieu [10,11]. Several delivery systems, including 
liposomes, microparticles, nanoparticles and hydrogels have been 
investigated for the sustained drug delivery and for prolonged drug 
release in the joints [12]. In vitro studies have demonstrated that 
the phospholipidic layer acting as a boundary lubricant was missing 
from the articular surface of osteoarthritic degenerated cartilage and 
changes in the structure of Chondroitin Sulfate (CS) occurred in case 
of OA [13-15].
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However, i.a. administration of drugs presents some limitations. 
Depending on the chemical structures of drugs, some active 
compounds are rapidly cleared from the joint. In order to increase 
the residence time of the administered substance, several injections 
are required, which could result in infection or joint disability. The 
direct injection is the simplest method for i.a. delivery of drugs, but 
not the most effective one [5]. 

Drug Delivery Systems for Intra-
Articulartherapy-Advantages and Limits

Alternative approaches for local drug delivery were proposed by 
researchers in the Nanomedicine area that have developed efficient 
systems, for specific therapeutic agents, able to increase the specificity 
and selectivity of the drug [20] and also to promote regenerative 
processes [21,22]. Several Drug Delivery Systems (DDS), including 
liposomes [11,23-26], micro- and nanoparticles [27-29], polymers 
[30] and hydrogels [31-33] have been investigated for the sustained 
drug delivery to the joints. An important observation related to 
i.a. administration of microspheres was their up taken by synovial 
macrophages [28]. This property offers a strategy to sustain drug 
delivery within the joint and to deliver NSAIDs directly to pivotal 
inflammatory cells in order to improve the drug therapeutic potential.

The necessity for a suitable carrier able to protect the drug, to form 
a depot at the site of administration and to release it in a controlled 
manner helped increased the interest in designing DDS, specifically 
for the i.a. environment. Among all DDS, liposomes and microspheres 
have been evaluated in vivo in relation to i.a. drug delivery, being used 
to develop preclinical tests and new efficient products on the market. 
The encapsulation of the drugs was also proposed to improve their 
performances and sustained with good argumentation by Butoescu et 
al. and Janssen et al. [30,34].

Future innovations in this field should be directed toward the 
development of functionalized DDS targeting specific regions and 
thermo responsiveness for prolonged drug release in the joints. 
Further advances are in progress to bring forth new biocompatible 
and biodegradable materials, as drug carriers or new combination 
regimens [33]. Besides pain relieve, these complex DDS will aim to 
solve tissue regeneration for OA patients.

The benefits of i.a. therapy of OA are not achieved using currently 
available medications and delivery vehicles, due to their rapid 
clearance from the synovial space [28]. The limits of DDS used for i.a. 
drug delivery are presented by Chen & Yang. Although many natural 
or synthetic polymers have been used for DDS development, they 
showed significant limitations in retention time and drug efficiency. 
The drug release is controlled after polymer encapsulation, but the 
delivery system doesn’t make easier the penetration of therapeutic 
substances into the cartilage matrix. Besides, many proposed DDS 
have a complicated fabrication technology and few studies addressed 
their toxicity limit for clinical applications. All these observations 
denote the need for a more effective and safer i.a. DDS. 

Liposomes as DDS for Intra-Articular 
Therapy of Arthritic Diseases

Liposome science and technology is one of the fastest growing 
scientific fields [35]. The technological process for fabrication of 

liposomes with optimized properties, as controlled DDS, was reviewed 
by Allen & Cullis [36]. Liposome drug products were the first type 
of therapeutic nanoparticles being introduced in the market [37,38]. 
Stability of the liposomal formulations in physiological conditions 
is a key issue in drug delivery [36]. In order to increase liposomes 
stability in the presence of synovial fluid, data from available 
literature show that polar lipids should be included in the bilayer 
[11]. On the other hand, cholesterol incorporation in the bilayer 
increases the membrane stability and the encapsulation efficiency of 
both hydrophilic and lipophilic bioactive molecules in the liposomes. 
Increased cholesterol concentration in the phospholipids bilayer 
can cause a gradual disappearance of the phase transition without 
affecting the transition temperature [29].

Liposomes are the most investigated carriers for targeted drug 
delivery [39] and for their potential in the treatment of arthritic 
diseases [29,40-43]. Their successful application in therapy depends 
on their composition and physical properties, including size, 
dispersity, morphology and surface charge [44,45]. Also, due to their 
capability to incorporate hydrophilic and hydrophobic molecules, 
good biocompatibility, low toxicity, activation and targeted delivery 
of bioactive compounds to the site of action, liposomes offer many 
advantages, such as protection and efficiency of encapsulated material, 
solubilization of lipophilic molecules, prolong the duration of action 
and present targeting option [46-49]. Many reviews highlighted 
the important role of liposomes in joint boundary lubrication and 
protection of articular cartilage from degenerative changes, as 
demonstrated by in vitro studies [50-52]. A major advantage of using 
liposomes is the larger quantity of drug that passes through the cell 
membrane into the cell cytoplasm. Besides, lipophilic drugs could 
be solubilized by entrapment into the lipid bilayer of the liposomes 
[53]. The i.a. route of administration could offer several beneficial 
advantages for drug uptake due to the presence of phospholipids in 
both cell membranes and the double layer of lipid vesicles (liposomes).

Liposome ability to modify the pharmacokinetics and 
biodistribution of the encapsulated drug after i.a. administration 
was underligned in several studies [25,26]. Furthermore, liposomes 
encapsulating anti-inflammatory drugs, i.a. administered in an animal 
model, exhibited a prolonged residence time in the joint [11,25], 
enhanced reduction of inflammation [26] and reduced adverse systemic 
effects [41,54,55]. A series of studies related to i.a. administration of 
liposomal formulations of NSAIDs reported a significantly higher 
anti-inflammatory activity than that of the free drug in rat induced 
arthritis model. Studies on drug retention and slow release found 
a close correlation with the method of liposome preparation, lipid 
composition, and liposome size and charge and lipids-drug ratio [56]. 
Also, the i.a. administration of liposomal glucocorticoids resulted in 
superior therapeutic efficiency, compared to that of free drug [57], at 
both early disease stage and peak of the disease [58]. Three different 
glucocorticoids (dexamethasone, budesonide and prednisolone) 
were encapsulated in long circulating liposomes and their therapeutic 
activity and adverse effects were investigated in rats with adjuvant 
arthritis and collagen induced arthritis. Encapsulation of drugs 
in liposomes not only increased their therapeutic efficacy, but also 
decreased their clearance from the body [59]. Previous in vivo studies 
in DBA1 mice with collagen induced arthritis (CIA) demonstrated 
the liposome ability to protect Lactoferrin (Lf), an antinflammatory 
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bioactive molecule, from harsh biological environments, to change its 
pharmacokinetics and biodistribution and to release it in a controlled 
manner [11]. Comparative studies showed that Lf entrapped in 
positive multivesicular liposomes was retained longer (2 weeks) 
in the injected joint, compared to free protein and other liposome 
formulations after i.a. administration, demonstrating a prolonged 
anti-inflammatory effect [11].

In a recent review, it was indicated that cytokines play a critical 
role in the pathological process of OA development [60]. In vivo 
studies on lymph node T cells in DBA1 CIA mice showed decreased 
proinflammatory cytokines (TNF-α and IFN-γ) level, accompanied 
by increased anti-inflammatory cytokines (IL-5 and, especially, IL-10) 
after i.a. treatment with liposomes encapsulating Lf, compared with 
free Lf treatment. The results suggested that the ability of positively 
charged liposomes to enhance Lf therapeutic effect is mediated by a 
change in Th1/Th2 cytokinebalance [25].

All these data indicate liposome ability to enhance the 
anti-inflammatory properties of bioactive molecules after i.a. 
administration in vivo and encouraged further studies on liposome 
formulation technology for i.a. administration of another bioactive 
compound, Chondroitin Sulfate (CS).

CS as Bioactive Molecule in OA Treatment 
CS, a major component of the extracellular matrix of cartilaginous 

connective tissue, is a natural polysaccharide and an important 
component of the Glycosaminoglycans (GAGs) class, which plays 
an important structural role in articular cartilage [2,15,61-63]. GAGs 
are attached as side chains to a core protein to form proteoglycans 
that are needed to stabilize cell membranes and to increase the 
intracellular ground substance. The use of CS to improve the clinical 
symptoms of OA is based on the assumption that administration of a 
cartilage matrix component would help chondrocytes to replace lost 
or damaged tissue [64]. CS has been proposed as safe and tolerable 
chondroprotective agent in the oral treatment of OA and named 
symptomatic slow-acting drug for OA (SYSADOA) [29,61,65-67].

CS has been shown to reduce proinflammatory factors, modify 
the cellular death process and improve the anabolism/catabolism 
balance of the cartilage extracellular matrix [63]. The anti-
inflammatory and anti-apoptotic effects of CS are increasingly used 
to treat OA [68]. Recently, Bishnoi et al. (2016) highlighted CS key 
role in the regulation of cell development, adhesion, proliferation 
and differentiation [69]. The applications of CS were also focused on 
repair of damaged structures in different biological tissues, alone or in 
combination with other biopolymers [69].

CS for Intra-Articular Administration
The therapeutic benefits of CS have been studied for more than 

20 years by high-quality meta-analysis and its efficacy was explained 
through three main mechanisms: stimulation of extracellular matrix 
production by chondrocytes, suppression of inflammatory mediators 
and inhibition of cartilage degeneration [70]. These in vitro findings 
motivate the consideration of CS for i.a. injections used in the 
treatment of painful joints and as a potential prophylactic compound 
against the progression of cartilage degeneration [29]. To improve 
the efficacy of CS as a therapeutic agent in osteoarthritic knee 

treatment, David-Raoudi et al. suggested the necessity to deliver it 
directly into the synovial cavity [71]. In this way, CS injected into the 
synovial fluid would be in direct contact with both synoviocytes and 
superficial chondrocytes and, therefore, would exert similar effects to 
those found in vitro [70]. In support of such approach, i.a. delivery of 
CS has been shown to be effective in a rabbit model for the repair of 
joint defects [31].

CS stimulates the proteoglycan synthesis of bovine and human 
chondrocytes [72,73], whereas it decreases interleukin-1β (IL-
1β)-induced expression of matrix metalloproteinase-1, -3, and -13 
(MMP) and aggrecanase-1 and -2 [63,70,73]. Furthermore, some 
anti-inflammatory properties have been attributed to CS based on its 
ability to inhibit human leukocyte chemotaxis and phagocytosis, to 
protect the plasma membrane from oxygen reactive species [74] and 
to reduce cyclooxygenase-2 (COX-2) expression and prostaglandin 
E2 production by chondrocytes [70,73]. Moreover, CS can up-
regulate the local hyaluronan synthesis by joint cells and, thus, can 
probably provide the supply of hyaluronan for a longer period of time 
than single injection of exogenous hyaluronan, which is known to 
have a short-life period [71].

Hui et al. have evaluated the efficacy of i.a. injection of CS carried 
by hydrogel in the treatment of chondral defects in adult rabbit 
models, compared to free CS [31]. The optimal formulation regarding 
the biocompatibility and the release kinetics of CS was CS-α-CD-EG 
4400 hydrogel that improved the biomechanical and histological 
properties of the cartilage and induced the tissue repairing process 
[31]. Rivera et al. have demonstrated the therapeutic effectiveness of 
sodium hyaluronate plus CS in reducing pain, improving mobility 
and reducing the consumption of analgesics after i.a. administration 
of hyaluronate and CS in human patients with OA using a multicenter 
prospective study [75]; their results should be confirmed in a 
randomized controlled study.

Liposomes-CS for i.a. Administration
In vitro, in vivo and in human studies have demonstrated the 

biocompatibility, the anti-inflammatory and regenerative effect of 
CS alone, associated with hyaluronan or included in hydrogel for 
local therapy of OA. Because of the greatly prolonged drug residence 
time at the administration site, liposomes have been proposed as 
suitable carriers of bioactive molecules in i.a. therapy of inflammatory 
diseases [34,40,41,54]. The therapeutic profiles of many biological 
and pharmacological agents can be improved by incorporation 
into lipid-based carrier systems. Liposomes have proven to be 
very effective to form a depot and to protect the drug from the 
harsh biological environment by virtue of their size and chemical 
composition [11,25,29]. Taking into account all these findings, the 
i.a. administration of CS entrapped in liposomes could prolong its 
retention time in joint and could have therapeutic potential in OA 
and other local inflammatory conditions.

To improve CS entrapment efficiency and to obtain a suitable 
liposome system, able to form a depot and to release CS in a controlled 
manner in the synovium, Trif et al. have selected the method for 
liposome-CS (L-CS) preparation [76]. The ultra structure of L-CS 
population was observed and its in vitro biocompatibility was proved 
in a human dermal fibroblast culture system. The cell viability tests 
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have indicated no cytotoxic effects induced by empty liposomes, CS 
and L-CS systems, while cells maintained their normal morphology, 
similar to control fibroblasts. The liposomal system consisting of 
Multilamellar Vesicles (MLV) and CS presented a good electrostatic 
interaction between the two components and transmission electron 
micrographs showed the entrapment of CS particles within the 
liposomes [76]. Another optimal L-CS formulation as small 
unilamellar vesicles (SUV) was selected after characterization in terms 
of size, polydispersity index and zeta-potential and its therapeutic 
efficiency was investigated in vitro using a model of fibroblasts 
inflammation [77]. The results demonstrated a more efficient cell 
protection against oxidative damage using L-CS treatment than 
CS alone. Also, L-CS exhibited a higher anti-inflammatory activity 
than CS in stimulated cells by reducing the level of IL-8 and TNF-α 
proinflammatory cytokines [77].

The physico-chemical characteristics of L-CS systems vary with 
the preparation technology, liposomal lipids composition, lipids-drug 
ratio, liposomes size and charge. Depending on their application, 
a suitable method involving different mechanisms of liposomal 
population formation should be used [78,79].

Liposomes Entrapping CS in Different 
Models of Inflammation

It is known that OA produces inflammation of the synovial 
membrane that attracts macrophages and alters synovial fibroblasts 
and chondrocytes activity. The down-regulation of proinflammatory 
cytokines, such as TNF- α, IL-6 and IL-8, as important mediators of 
inflammation and the chondroprotective effect of L-CS formulations 
were analyzed using in vitro experimental models: human monocytic 
cells (THP-1) differentiated to macrophages and inflamed with 
lipopolysaccharide (LPS) [80] and rabbit chondrocytes inflamed 
with IL-1β [81]. L-CS inhibited the release of IL-6 and TNF-α in the 
culture medium in the highest proportion, compared to CS. The IL-8 
secretion was also inhibited by L-CS, but to a lesser extent. Similar 
results were obtained for cytokines production in IL-1β-stimulated 
rabbit chondrocytes and LPS-stimulated macrophage cells treated 
with L-CS [82]. These studies demonstrated that entrapment of CS 
into liposomes significantly enhanced the anti-inflammatory capacity 
of the free compound.

Hofkens et al. (2011) showed that liposomes entrapping an 
anti-inflammatory agent induced a dose-dependent suppression 
of IL-1β production and a significant reduction in MMP-3, -9, -13 
and -14 expression, indicating that liposomal targeting of the anti-
inflammatory drug to macrophages offers an effective strategy to 
inhibit the factors that contribute to destruction of cartilage matrix 
during arthritis [83]. In this way, MMP-liposomes interaction studies 
were performed inIL-1β inflamed rabbit chondrocytes treated 
with CS and L-CS in the culture medium, for 48h [82]. Gelatin-
zymography results showed that the liposomal treatment of the 
inflamed chondrocytes influenced the MMP activity in the culture 
medium. These results confirmed the observation of Banerjee et 
al. regarding modulation of high levels of MMP-9 upon liposomal 
content release [84]. Due to its ability to modulate the secretion of 
destructive MMP in inflamed chondrocytes, liposomal formulation 
of CS could be further investigated as chondroprotective therapeutic 
agent in arthritis. 

Several studies have described the benefits of CS in applications 
for cartilage tissue engineering. Liposomes have been widely used 
as carriers to encapsulate and to protect bioactive agents from the 
surrounding environments. Monteiro et al. highlighted the potential 
role of liposomes as a platform for the sustained and local delivery 
of bioactive agents for tissue engineering and regenerative medicine 
approaches [85]. A suitable drug carrier can up-regulate tissue 
regeneration by controlled delivery of a biomolecule in a localized 
space [86]. As a result, local therapy using liposome-scaffolds in 
tissue engineering and regenerative medicine could be very efficient 
[85]. In this direction, a 3D porous matrix of collagen embedding 
the liposomal formulation of anti-inflammatory bioactive molecule 
(L-CS) was prepared and physico-chemically and biologically 
characterized [87]. This matrix system could be used in local delivery 
of therapeutic agents. Its morphological appearance was similar to 
that of collagenic scaffold, but more investigations are required to 
confirm its in vitro and in vivo anti-inflammatory and regenerative 
capacity. However, the potential of this strategy has to be investigated 
in order to optimize liposome formulations and select the best 
material for specific applications.

Conclusion
I.a. therapy can increase the efficacy in OA treatment, although 

it presents limitations. DDS represent an alternative approach 
for local drug delivery in a controlled manner. Liposomes as DDS 
offer beneficial advantages in drug uptake into the cytoplasm after 
i.a. administration. CS is an efficient therapeutic agent in knee OA 
treatment. Delivery of CS in liposomal formulation could improve its 
potential in i.a. treatment of OA.
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