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Abstract

With a steadily increasing world population, infertility and sub fertility have 
been distressed a significant proportion of humanity. The emotional impact of 
infertility has been described via several clinical observations. Up to half of all 
infertile couples, male infertility plays a critical role, and in some cases, the 
causes of infertility remain unknown. Recent progress towards understanding 
male infertility has been demonstrated that quality and quantity of spermatozoa 
are one of the leading causes of infertility. Since sperm’s ability to fertilize an 
oocyte is largelya molecular biochemical event; in-depth understanding of 
sperm biology could provide useful guidelines for clinicians and researchers 
to sustain patient’s hope. In this review, we discussed some basic events in 
spermatozoa that confer its ability for fertilization, which need to be understood 
in order to answer the global issue of male infertility.
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undergo a maturation process and acquire functionality during their 
journey from proximal to the distal end of the epididymis [8]. The 
entire processes of spermatogenesis, as well as epididymal maturation 
of spermatozoa are highly sensitive to the fluctuations of the 
environment, particularly hormones and temperature. In addition, 
dietary deficiency (e.g. vitamins E, B, and A), habitat (e.g. smoking, 
alcohol consumption), exposure to the toxic metals (e.g. cadmium 
and led), radiation, pesticides, chemotherapy, and environmental 
contaminants (e.g. endocrine disrupting chemicals) may directly 
affect the processes, leading to the abnormal spermatogenesis, low 
sperm count, and male infertility [9-15]. Therefore, in order to 
maintain proper reproductive health individual should minimize/
avoid such risk factors. 

Morphological features of spermatozoa
All men produce a large proportion of morphologically (size 

and shape) abnormal spermatozoa. According to the new edition 
of the World Health Organization manual of semen analysis, only 
4-15% of total spermatozoa are being considered as normal [16]. A 
typical mammalian spermatozoon contains an oval‒shaped head, 
a well‒defined acrosome (covers about 40-70% of the sperm head), 
and intake neck, midpiece, and tail. In the early 1900s, morphological 
features were considered single most important criteria to detect 
the fertilization capability of a spermatozoon [17]. Although this 
statement later has proven to be inconsistent, there is a strong 
positive correlation between the percentage of normal spermatozoa 
with fertilization rate, both in-vivo and in-vitro [16]. Now, therefore, 
evaluation of sperm morphology has become a routine practice in 
infertility clinics to examine fertility competence of a male, as well as 
to decide whether a couple is capable of In-Vitro Fertilization (IVF) 
to attempt pregnancy or not. 

Sperm motility and motion kinematics
Motility is one of the important characteristics associated with 

Introduction
Infertility of both male and female has become a global concern 

[1] because approximately 15% of couples are suffering from 
this problem and around 50% cases male partner of a couple is 
responsible for not having any child. Based on the review of existing 
literature, Agrawal et al. [2] have reported an alarming percentage 
of male factors infertility across the globe (Figure 1). One of the 
common causes of male infertility is the abnormality of spermatozoa 
[1,2]. Some preliminary studies have suggested that sperm counts 
and motility are the major factors of male infertility [1-3]. However, 
results of most recent studies indicated that men with very low sperm 
counts and motility sometimes may have babies and vice versa [4-6]. 
Therefore, the ability of spermatozoa to fertilize an oocyte is mainly a 
biochemical event at the molecular level that needs to be understood 
in order to answer the global concern of male infertility.

Sperm Biology vs Male (In) Fertility
Formation and maturationof spermatozoa

A spermatozoon is the male sex cell produced through a 
unique process called spermatogenesis, which starts due to the 
differentiation process of spermatogonial stem cells. The entire 
process of sperm production includes a complex interaction of 
three consecutive phases of cellular proliferation and differentiation 
[1]. First, spermatogonial cells divided mitotically to produce an 
optimum number of spermatogonia that give rise to diploid primary 
spermatocytes. Second, the primary spermatocyte divides meiotically 
(meiosis I) into two secondary spermatocytes. Third, each secondary 
spermatocyte undergoes second meiosis (meiosis II) and divides into 
two round spermatids. Subsequently, the roundspermatids undergo 
remodeling of their nuclear, chromatin, and cellular components, 
finally transform to spermatozoa into the lumen of the seminiferous 
tubule by a process named spermiogenesis [7]. The processes of 
spermatogenesis have been depicted in Figure 2. Spermatozoa then 
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the fertilizing capability of spermatozoa. Therefore, measuring the 
fraction of perfectly motile spermatozoa probably is one of the most 
straightforward approaches used worldwide to detect male fertility 
[18,19]. In order to make this benchmark indicator more reliable 
in predicting fertility, different infertility clinics optimize their 
own experience of the correlation between semen analysis results 
(motility and motion kinematics parameters) and subsequent fertility 
outcomes.

After production in testis, mammalian spermatozoa undergo 

maturation process as they travel through epididymis [20]. 
Subsequently, spermatozoa acquire cholesterol, protein, etc., from 
the epididymis, which is an essential preliminary step for gaining 
motility [20,21]. Although spermatozoa gain oxygen from the cauda 
epididymis, they remain immotile [22]. In a later stage, spermatozoa 
start a strong flagellar movement when they come and contact with the 
seminal fluid containing a high concentration of HCO3

− and Ca2
+ions 

[1,22]. The movement of the both ions into the spermatozoa regulates 
metabolism of cyclic Adenosine Monophosphate (cAMP) via 
triggering a unique type of Adenylyl Cyclase (sACY) located in sperm 
membrane (Figure 3). In addition, HCO3

− has also been associated 
withan increase in the intracellular pH (pHi). As a consequence of 
sACY activation, increased levels of intracellular cAMP activated the 
Protein Kinase-A (PKA). Further activation of PKA in spermatozoa 
is gained through phosphorylation of PKA substrates [23]. Together 
the increased levels of cAMP and phosphorylated PKA substrates in 
spermatozoa trigger the early activation of the sperm motility [1,9,24-
26] (Figure 3). Therefore, if any chemicals or environmental factors 
are capable of manipulation these molecular cascades in spermatozoa, 

Figure 1: Illustration represents percentage of male factor infertility in North 
America, Latin America, Africa, Europe, Central/Eastern Europe, Middle East, 
Asia, and Oceania. The image was adapted from Agarwal and others (2015), 
reviewing the male infertility around the globe. Reprod Biol Endocrinol. 13:37 
[2].

Figure 2: Illustration represents the cellular, genetic, and chromatin 
modifications during spermatogenesis. Male primordial germ cells 
(spermatogonia) differentiate to primary spermatocytes that subsequently 
undergo genetic changes to produce round spermatids. Next, the round 
spermatids participate in spermiogenesis and finally produce permatozoa. 
Following ejaculation, spermatozoa must undergo capacitation and the 
acrosome reaction, prerequisite for fertilization. The left panel of the figure 
shows histological section of mice testis with different spermatogenic cells, 
stained with Hematoxylin and Eosin staining (H&E). See also the main text 
for the description of the illustration. The figure has been modified, and citing 
the original source published in Int J Endocrinol, 2013 [1].

Figure 3: Illustration represents molecular changes in spermatozoa 
responsible for the motility activation, capacitation, and the acrosome 
reaction. The sperm motility is activated by the phosphorylation of protein 
kinase-A (PKA) substrates in a media containing HCO3

− and Ca2
+ sources. At 

the molecular level, PKA is activated by Ca2
+ and HCO3

- mediated triggering 
of the transmembrane atypical adenylyl cyclase (sACY). In these cases, 
Ca2

+ and HCO3
- are transported across cell membrane via Ca2

+ channel 
(Casper) and Na+/HCO3

- cotransporter (NBC), respectively. Simultaneously, 
incubation of spermatozoa either in-vivo (female reproductive tract) or in-vitro 
(in a specialized media) for extended period of time increased the tyrosine 
phosphorylation, responsible for the capacitation, the acrosome reaction, 
and changes in the motility pattern known as hyper activation. On the other 
hand, inhibition of Phosphordiesterase (PDE) has been increased cAMP 
levels, subsequently affects sperm motility. See also the main text for the 
description of the illustration. The figure has been modified, and cite the 
original source published in Proc Natl Acad Sci U S A., 2009 [22] and Reprod 
Biol Endocrinol., 2004 [38].
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it will definitely affect the sperm motility and male fertility.

Recently it has been demonstrated that exposure to endocrine 
disrupting chemicals (e.g. bisphenol-A, sodium fluoride, benzopyrene, 
and so no) has been linked with the significantly decreased sperm 
motility [9,25,27]. The decreased motility of spermatozoa due to 
the exposure of the endocrine disrupting chemicals were associated 
with altered PKA activities and phosphorylation of sperm proteins 
in tyrosine residue [9,25]. The similar effects on sperm motility were 
also demonstrated in another study due to in-vitro exposure of toxic 
chemicals sodium nitroprusside [28]. In another study Yoon et al., 
[29,30] demonstrated that addition of cryoprotectant agent to bull 
spermatozoa during cryopreservation decreased the motility via 
alteration of mitochondrial activities in spermatozoa. Therefore, 
future researches should focus on identifying other agents; especially 
environmental factors that are capable of modifying male fertility via 
regulation of the sperm motility.

Capacitation and the acrosome reaction 
Ejaculated mammalian spermatozoa are unable to fertilize an 

oocyte even they are mature or morphologically normal [18,31,32]. 
Therefore, spermatozoa must undergo a chain of biochemical and 
physiological modifications that enable its bindings and penetration 
into an oocyte [33]. These essential modifications in mammalian 
spermatozoa responsible for fertilization, commonly termed as 
capacitation [34-36]. The acrosome reaction is another necessary 
event in spermatozoa and also similarly important for sperm‒
oocyte fusion [33]. Jin et al., [37] reported that fertilizing murine 
spermatozoa start their acrosome reaction before contact with the 
oocyte zona pellucida. In fact, clinical uses of IVF only become 
possible by the discovery of capacitation as well as the acrosome 
reaction. Both events are regulated by a complex interactions of 
several cascades, such as an influx of intracellular calcium, availability 
of bicarbonate ions, changes of sperm membrane fluidity, cAMP and 
PKA activity, and protein tyrosine phosphorylation in spermatozoa 
[1,18,19,22,24,38] (Figure 3). Although these changes in spermatozoa 
during capacitation/the acrosome reaction occur in the female genital 
tract in vivo; however, it can also be achieved in-vitro in a specialized 
media containing an appropriate concentration of bicarbonate, 
calcium, and serum albumin [38]. Similar to the early activation of 
the sperm motility, increased levels of pHi due to transmembrane 
movement of the HCO3

- also has been noticed during these changes. 
Salicioni et al. [23] reported that serum albumin that used to induce 
capacitation in vitro is responsible for depletion of plasma membrane 
cholesterol in spermatozoa, which subsequently has given raise the 
other capacitation conferring cholesterol-binding compounds named 
cyclodextrins. Tyrosine phosphorylation, on the other hand, another 
most important event associated with capacitation and the acrosome 
reaction (Figure 3).

Recently from our laboratory we were able to identify several 
chemicals/ toxic chemicals (e.g. sodium nitroprusside; CK-636, 
nutlin-3a, 4,4’-diisothiocyanostilbene-2,2’-disulfonic acid, and 
deamino vasopressin) and environmental contaminants (especially 
endocrine disrupting chemicals, such as bisphenol-a, sodium 
fluoride,genistein, 4-tert-octylphenol, and benzopyrene) that 
potentially regulate tyrosine phosphorylation in spermatozoa 
through a PKA-dependent/independent mechanism, simultaneously 
affect the capacitation/the acrosome reaction and succeeding fertility 

of mouse spermatozoa [9,25-28,39-42]. Therefore, basic knowledge 
of sperm capacitation may increase our understanding to unravel 
the mystery of male infertility. Recently, Kwon et al. [43] reported 
that evolution of boar sperm capacitation status showed significant 
correlation with subsequent fertility, while sperm motility and motion 
kinematics parameters represented a statistically non-significant 
correlation with litter size. Therefore, evolution of capacitation status 
of spermatozoa together with conventional semen analysis might 
consider in order optimizing the fertility prediction in human and 
domestic animal species. In contrast, other studies have reported that 
premature acrosome reaction may result in altered mitochondrial 
function and chromatin decondensation of spermatozoa, which 
have potential harmful effects on sperm viability and fertility [44,45]. 
Usually, a component of egg zona pellucida induces the acrosome 
reaction in spermatozoain situ, following binding. Therefore, if the 
acrosome reaction has taken place early prior to the spermatozoa 
reaching to the oocyte is incapable to penetrate the zona pellucida 
[46,47]. Therefore, detection of premature acrosome reaction/ sperm 
acrosomal status could be one of the very useful methods for the 
evaluation of sperm fertility [48,49]. 

Conclusion
In conclusion, this review will open new windows to investigate 

male infertility. Firstly, it identifies several molecular mechanisms 
that regulate sperm’s ability to function normally. Secondly, it serves 
as a proof of principle to optimize male (in) fertility prediction. 
Since, this manuscript described several findings mainly derived 
from in-vitro studies to correlate sperm function and male fertility, 
therefore future research should be targeted using in-vivo model 
and to prove whether these correlations is also existed in-vivo. On 
the other hand, some other factors such as genetic and epigenetic 
factors are also very important in order to optimize male fertility. 
There is increasing recognition of the contribution of both factors to 
the causation of male infertility. Therefore, studies are also required 
to search relationships between genetic and epigenetic alteration in 
spermatozoa and associated male infertility.
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