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Abstract

Herein a serial of asymmetric Darzens reactions catalyzed by the novel 
chiral phase transfer catalysts derived from cinchona alkaloids were reported 
with moderate to high diastereoselectivity and with moderate enantioselectivity. 
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solvent was evaporated and the residue was purified with silica gel 
(chloroform: methanol = 30:1) to give the product (0.238g, 63% yield).

1H NMR (500 MHz, CDCl3): 8.7290-8.7204 (m,1H) 8.0506-
8.0238 (m,1H) 7.3945-7.3349 (m, 2H) 7.2528-7.2218 (m, 1H) 
6.4336-6.4090 (m, 1H) 6.0792-6.0454 (m, 1H) 5.7119-5.6122 (m, 2H) 
5.5391-5.5336 (m, 1H) 4.9527-4.8838 (m, 2H) 4.7799-4.7595 (m, 1H) 
3.9461-3.9340 (m, 3H) 3.3115 (s, 1H) 3.1652-3.0853 (m, 2H) 2.7290-
2.6179 (m, 2H) 2.2770 (s, 1H) 2.1537 (s, 2H) 1.8751-1.7688 (m, 4H) 
1.5377-1.5175 (m, 3H) 1.2454-1.2100 (m, 1H) 13C NMR (500 MHz, 
CDCl3): 157.8505, 148.6980, 147.3576, 143.9983, 141.5296, 139.6108, 
138.8185, 132.7581, 129.2598, 126.1965, 121.9891, 119.2893, 
102.0956, 78.5066, 76.8134, 65.8451, 58.7737, 56.7155, 54.0146, 
42.7227, 37.3716, 26.7743, 24.7174, 20.4527, 18.0087 ES-MS: 377.2 
(M); [α]D

22 = +100°(c = 0.2 in CH2Cl2). Elemental analysis: Calculated: 
C: 76.4%, H: 7.7%, N: 7.4% Found: C: 76.28%, H: 7.92%, N: 7.58%.

(1S,7R,10S,E)-1-(6-methoxyquinolin-4-yl)-9-vinyl-
1,3,6,8,9,10,11,11a-octahydro-7,10-ethanopyrido[2,1-c][1,4]
oxazocin-7-ium(4c): Quinidine (0.324g, 1mmol) was dissolved in 
THF (5ml), and sodium hydride (0.048g, 2mmol) was added. The 
reaction mixture was stirred and heated to 800C and refluxed for 1h, 
then (E) -1,4 – dibromo-2 – utane (0.321g, 1.5mmol) is added. The 
reaction mixture was further refluxed for 12 hours and the reaction 
was monitored by TLC. After the completion of the reaction, the 
solvent was evaporated and the residue was purified with silica gel 
(chloroform: methanol = 30:1) to give the product (0.2g, 53.1% yield).

1H NMR (500 MHz, CDCl3): 8.7204-8.7193 (m,1H) 8.0601-8.0294  
(m, 1H) 7.4040-7.3413 (m, 2H) 7.2626-7.2166 (m,1H) 6.4454-6.4046 
(m, 1H) 6.1093-6.0400 (m, 2H) 5.6780-5.5472 (m, 2H) 5.1599-5.0716 
(m, 2H) 4.9482-4.8920 (m, 1H) 4.7891-4.7547 (m, 1H) 3.9442-3.9328 
(m, 3H) 3.1868-3.1019 (m, 2H) 2.9826-2.7679 (m, 4H) 2.2706-2.2463 
(m,1H) 1.7724 (s, 1H) 1.5069-1.4824 (m, 3H) 1.2527-1.1816 (m, 
2H) 0.9454-0.8975 (m, 1H) 13C NMR (500 MHz, CDCl3): 157.1687, 
150.1687, 147.3799, 145.8176, 144.0027, 140.8254, 133.1505, 
131.2325, 129.6808, 126.9962, 121.2880, 119.2112, 102.2112, 82.2055, 
80.6039, 60.2081, 55.4593, 49.9428, 49.0488, 48.3823, 39.6256, 
27.7150, 25.9084, 24.6867 ES-MS: 377.2 (M); [α]D

22 = -14°(c = 0.2 in 

Materials and Methods
Typical procedure of the synthesis of chiral catalyst 4a 
to 4d 

(1S,7R,10S,E)-1-(quinolin-4-yl)-9-vinyl-1,3,6,8,9,10,11,11a-
octahydro-7,10-ethanopyrido[2,1-c][1,4]oxazocin-7-ium(4a): 
Cinchonidine (0.294g, 1mmol) was dissolved in THF (5ml), and 
sodium hydride (0.048g, 2mmol) was added. The reaction mixture 
was stirred and heated to 80oC and refluxed for 1h, then (E) -1,4 – 
dibromo-2 – utane (0.321g, 1.5mmol) is added. The reaction mixture 
was further refluxed for 12 hours and the reaction was monitored by 
TLC. After the completion of the reaction, the solvent was evaporated 
and the residue was purified with silica gel (chloroform: methanol = 
30:1) to give the product (0.24g, 70% yield).

1H NMR(500 MHz, CDCl3): 8.9188-8.9043 (m, 1H) 8.2234-
8.1656 (m, 2H) 7.7959-7.6351 (m, 2H) 7.4242-7.4097 (m, 1H) 6.4735-
6.4328 (m, 1H) 6.1463-6.0199 (m,1H) 5.8805 (s, 1H) 5.7594-5.6443 
(m, 2H) 5.0114-4, 9213 (m, 3H) 4.8283-4.7940 (m, 1H) 3.4942-3.4170 
(m, 1H) 3.2820-3.1826 (m, 2H) 2.8837-2.7382 (m, 2H) 2.3971 (s, 1H) 
1.9077-1.8730 (m, 3H), 1.6735-1.5299 (m, 2H) 13C NMR (500 MHz, 
CDCl3): 150.0278, 147.9949, 146.0408, 142.1767, 133.1039, 129.8867, 
129.0374, 126.5786, 125.8792, 123.8068, 119.5861, 114.1071, 
111.9291, 109.5361,  107.8249,  82.5908,  81.2770,  60.2081,  55.8686,  
41.6474,  27.2226,  24.6763

ES-MS: 347.2 (M; [α]D
22 = +95.5°(c = 0.2 in CH2Cl2). 

Elemental analysis: Calculated:  C: 79.5%, H: 7.8%, N: 8.1%.

Found: C: 79.39%, H: 7.89%, N: 7.95%.

(1R,7R,10S,E)-1-(6-methoxyquinolin-4-yl)-9-vinyl-
1,3,6,8,9,10,11,11a-octahydro-7,10-ethanopyrido[2,1-c][1,4]
oxazocin-7-ium(4b): Quinine (0.324g, 1mmol) was dissolved in 
THF (5ml), and sodium hydride (0.048g, 2mmol) was added. The 
reaction mixture was stirred and heated to 800C and refluxed for 1h, 
then (E) -1,4 – dibromo-2 – utane (0.321g, 1.5mmol) is added. The 
reaction mixture was further refluxed for 12 hours and the reaction 
was monitored by TLC. After the completion of the reaction, the 
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CH2Cl2). Elemental analysis: Calculated: C: 76.4%, H: 7.7%, N: 7.4% 
Found: C: 76.6%, H: 7.45%, N: 7.57%.

(1R,7R,10S,E)-1-(quinolin-4-yl)-9-vinyl-1,3,6,8,9,10,11,11a-
octahydro-7,10-ethanopyrido[2,1-c][1,4]oxazocin-7-ium(4d): 
Cinchonine (0.294g, 1mmol) was dissolved in THF (5ml), and 
sodium hydride (0.048g, 2mmol) was added. The reaction mixture 
was stirred and heated to 800C and refluxed for 1h, then (E) -1,4 – 
dibromo-2 – utane (0.321g, 1.5mmol) is added. The reaction mixture 
was further refluxed for 12 hours and the reaction was monitored by 
TLC. After the completion of the reaction, the solvent was evaporated 
and the residue was purified with silica gel (chloroform: methanol = 
30:1) to give the product (0.197g, 56.9% yield).

1H NMR (500 MHz, CDCl3): 8.9185-8.9043 (m, 1H) 8.1907-
8.1148 (m, 2H) 7.7660-7.6210 (m, 2H) 7.4260-7.4120 (m, 1H) 6.4651-
6.4240 (m, 1H) 6.1454-6.0176 (m, 2H) 5.9080-5.8020 (m, 1H) 5.7185-
5.6410 (m, 1H) 5.1782-5.0697 (m, 2H) 4.9745-4.9180 (m,1H) 4.8213-
4.7874 (m, 1H) 3.2700-3.1762 (m, 3H) 3.0660-2.9939 (m, 2H) 2.8654 
(s, 1H) 2.3483-2.1630 (m, 3H) 1.8380 (s, 2H) 0.9761-0.8701 (m, 2H) 
13C NMR(500 MHz, CDCl3): 149.9942, 147.9244, 145.8366, 140.6015, 
133.0530, 129.8156, 129.0673, 126.6098, 125.8520, 123.8260, 
119.3837, 118.8478, 82.0510, 80.6292, 68.2785, 59.9805,49.0344, 
48.1538, 27.6099, 25.6839, 24.5560, 23.5513 ES-MS: 347.2(M); [α]D

22 
= +6°(c = 0.2 in CH2Cl2) Elemental analysis: Calculated: C: 79.5%, H: 
7.8%, N: 8.1% Found: C: 79.63%, H: 7.31%, N: 8.35%.

Typical procedure of the asymmetric darzens reactions
To a mixture of benzaldehyde (0.106g, 1mmol), chloroacetonitrile 

(0.091g, 1.2mmol) and THF (5ml), 4a (0.035g, 0.1mmol) was added 
and stirred for 20minutes. Solid KOH (0.067g, 1.2mmol) was added 
and continued stirring for 16 hours. The mixture was filtered and 
purified by TLC (PE: EA = 50:1) to give the cis-product (0.067 g) and 
trans-product (0.03 g) as colorless oil.

Cis-product 1H NMR (500 MHz, CDCl3): 7.408~7.388(3H, m), 
7.282~7.263 (2H, m), 4.278~4.275 (1H, m), 3.410~3.405(1H, m) [α]
D

22 =41o(major product).

Trans-product 1H NMR (500 MHz, CDCl3): 7.245~7.260 (5H, 
m), 4.248~4.237 (1H, m), 3.778~3.766 (1H, m)

Results and Discussions 
The development of asymmetric phase transfer catalysis has 

become more and more significant in both economic and environment 
fields [1, 2, 3]. Until recently, there have been three main generations 
of these catalysts derived from cinchona alkaloids (Figure 1). The 
first generation: R=H, Ar=Phenyl; the second generation: R=Allyl, 
Ar=Phenyl; and the third generation: R=Alkyl, Ar=Anthracyl. The 
first generation of catalysts were developed by Dolling’s group in 1984 
[4, 5], which were successfully applied in the asymmetric alkylation of 

glycine Schiff base by O’Donnell’s group with good enantioselectivity 
[6, 7]. The third generation of the catalysts was developed by E.J. 
Corey’s group [8]. Recently Waser et al. reviewed the asymmetric 
reactions catalyzed by the bifunctional quaternary ammonium 
catalysts [9], and Maruoka et al. also reviewed the asymmetric phase 
transfer catalysis with chiral quaternary ammonium catalysts derived 
from cinchona alkaloids and chiral C2-type quaternary ammonium 
catalysts [10].

Until recently, only few chiral phase transfer catalysts have been 
reported to be applied in the asymmetric Darzens reaction. Deng et 
al. reported that the second generation of the catalysts derived from 
cinchona alkaloids could catalyze the asymmetric Darzens reaction 
with high yield and good enantioselectivity [11]. While Shioiri’s 
group reported diastereoselective Darzens reaction catalyzed by 
tetrahexylammonium bromide [12]. And macromolecular phase 
transfer catalysts were reported by Wang’s group and were applied in 
diastereoselective Darzens reaction (Figure 2) [13]. Jonczyk’s group 
and Murugan’s group also reported the asymmetric Darzens reaction 
with different kinds of chiral phase transfer catalysts [14, 15].

Till now, our group has reported four novel chiral phase transfer 
catalysts derived from cinchona alkaloids with eight-member cycle 
structure (Figure 3). The asymmetric alkylation reactions of glycine 
derivatives catalyzed by these catalysts were also investigated with 
high yields and moderate to excellent ee values (39.5-99.7%) [16]. 
In continuation of our studies on the asymmetric phase transfer 
catalysis, herein we report the asymmetric Darzens reaction with the 
novel chiral phase transfer catalysts 4a to 4d.

We began our investigation with non-chiral phase transfer 
catalyst, we tried TEBAC (triethyl benzyl ammonium chloride) and 
TBAB (tetrabutyl ammonium bromide) in the Darzens reaction 

Figure 1: Three main generations of cinchona alkaloid based catalysts.
Figure 2: The catalyst synthesized by Wang’s group.

4a: R=H 4b: R=OCH3

4c: R=OCH3 4d: R=H

Figure 3: Four novel cinchona alkaloids based catalysts [16].

Figure 4: The reaction with different aldehydes and chloroacetonitrile in THF.
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between benzaldehyde and chloroacetonitrile in THF and we found 
only TBAB could catalyze the Darzens reaction, then we applied the 
reaction to different aldehydes and chloroacetonitrile in THF (Figure 
4) and the results were listed in Table 1.

As was shown in Table 1, the rates between cis-product and trans-
product were nearly 1:1. Only poor diastereoselectivity of the normal 
non-chiral phase transfer catalyst of TBAB was achieved and further 
work should be done to enhance the diastereoselectivity.

Having realized the non-chiral Darzens reaction between 
aldehydes and chloroacetonitrile, we turned our attention to its 
asymmetric version. In continuation of our studies on the asymmetric 
phase transfer catalysis and Darzens reaction, we tried to investigate 
the novel chiral phase transfer catalysts 4a to 4d developed by our 
group in the asymmetric Darzens reaction. Firstly, we chose the 
Darzens reaction between benzaldehyde and chloroacetonitrile as the 
model reaction and different reaction conditions were investigated 
and the results were listed in Table 2.

In Table 2, we found that 4a was the best catalyst and could give 
the best result both in cis/trans value and ee value, catalyst 4b, 4c and 
4d gave relatively lower cis/tans value and lower ee values. Of all the 
solvents we investigated, THF gave the best yield, cis/trans value and 
ee value, the more dipolar solvent gave out a better yield but very low 
cis/trans rate and enantioselectivity (entry 6), The less polar solvent 
toluene gave no product at all no matter with the solid or aqueous 
solution of KOH as the base (entry 7 and 8). Of all the bases we 
investigated, solid KOH gave the best yield, the cis/trans rate and the 
best enantioselectivity. So the optimal reaction condition was with 

4a as the catalyst, with THF as the solvent, and with solid KOH as 
the base (entry 1). Under the optimal reaction condition, the Darzens 
reaction between different aldehydes and chloroacetonitrile were 
investigates, and the results were collected in Table 3.

As was shown in Table 3, the catalyst 4a could bring much higher 
yield in the mass. The reaction catalyzed by 4a was much faster than 
common non-chiral phase transfer catalysts such as TBAB and higher 
diastereoselectivity were also achieved. The highest rate (cis: trans) 
was achieved as 6.9:1 with 3-methylbenzaldehyde as the substrate 
(entry 5). For the reactions catalyzed by 4a, low to moderate ee values 
were also achieved, and the highest ee value was achieved to be 70% 
with benzaldehyde as the substrate (entry 1). 

Conclusion
In all, we successfully applied the newly-designed chiral phase 

transfer catalysts 4a to 4d in the asymmetric Darzens reactions 
and satisfying and interesting results were achieved. Further 
work is under way to understand the mechanism and improve the 
diastereoselectivity and the enantioselectivity of the reaction.
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