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Abstract

A new type of chiral phase transfer catalysts were synthesized and applied 
in the asymmetric sulfenylation of glycine derivative with moderate to high yields 
and moderate to high ees (58-88%).
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for their enantioselectivity. The hydroxyl group and bridgehead 
nitrogen of cinchona alkaloids parent nucleus are two key groups, and 
the modification of them would directly affect the enantioselectivity 
based on Corey’s theory. And till now all modification were on the 
two groups respectively, only few papers [9] reported the modification 
on both two groups with one single reagent at the same time. We 
tried to realize the modification on the two groups at the same time, 
the two groups could be combined together to form a new cycle. 
Such structure would be more stable to shield the three faces of the 
tetrahedron, and the stereo selectivity would be enhanced. Here in 
we designed a new series of chiral phase transfer catalysts (1, 2, 3, 
4) based on the imagination. Those catalysts all had a six-member 

Introduction
Chiral unnatural sulfenylated amino acids play an important role 

in pharmaceutical industry and the synthesis of them are of great 
importance. The asymmetric sulfenylation of glycine derivatives with 
chiral phase transfer catalysts is one of the most important methods 
to prepare the chiral unnatural sulfenylated amino acids [1]. In 
recent years, chiral phase transfer catalysts derived from cinchona 
alkaloids have been a hotspot in asymmetric catalysis. Up to date, 
such kind catalysts can be divided into three generations [2-5]. As is 
shown in Figure 1: the first generation: R=H, Ar=Phenyl; the second 
generation: R=Allyl, Ar=Phenyl; and the third generation: R=Alkyl, 
Ar=Anthracyl. Deng et al. reported that the second generation of 
the catalysts could catalyze the asymmetric Darzens reaction with 
high yield and excellent enantioselectivity [6], Waser et al. reviewed 
the catalyzed asymmetric reactions catalyzed by the bi functional 
ammonium catalysts [7], Maruoka et al. reviewed the asymmetric 
phase transfer catalysis with chiral ammonium catalysts derived from 
cinchona and chiral C2-type ammonium catalysts [8].

According to E. J. Corey’s theory about the chiral phase transfer 
catalysts derived from cinchona alkaloids, if the bridgehead nitrogen 
of a cinchona alkaloid quaternary salt is taken to be at the center of a 
tetrahedron, the phase transfer catalyst should be structured so as to 
provide steric effect which prevents close approach of the counter-ion 
to three of the faces of this tetrahedron, while the fourth face should 
be sufficiently open to allow close contact between the substrate 
counter-ion and N+ ( Figure 2). 

The natural chiral carbon atoms of cinchona alkaloids are essential 
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Figure 1: Three generations of the chiral phase transfer catalysts derived 
from cinchona.

Figure 2: E. J. Corey’s model about the chiral phase transfer catalysts.
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Figure 3: Catalyst 1-4.
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rigid ring structure, which would be more stable and have the better 
enantioselectivity. We expected that the enantioselectivity would be 
increased by the formation of the rigid ring of those catalysts (Figure 
3).

A new series of chiral phase transfer catalysts were derived from 
cinchona alkaloids with 2-bromo-1-(4-(trifluoromethyl) phenyl) 
ethan-1-one (5). First, Chem-3D was used to simulate Three-
Dimensional of the designed catalysts in order to determine the 
feasibility of this kind of compounds and their minimum energy 
state. All the four isomers of cinchona alkaloids could form the 
purposed conformation of six-member ring structure, and the energy 
was close to each other and was near 65 kcal/mol. In accordance to 
the reference 9, only one anomer was formed in the condensation of 
the α-halogen ketone with cinchona alkaloids. Then the catalysts were 
synthesized, the 2-bromo-1-(4-(trifluoromethyl)phenyl)ethan-1-one 
(5) was prepared by 1-(4-(trifluoromethyl)phenyl)-ethan-1-one and 
bromine [10], then the four isomers were stirred with 5 in THF for 8 
hours (Figure 4), and 1, 2, and 3 could be achieved in 97-99% yields 
and no product of 4 was achieved.

Then all the three catalysts were applied in the asymmetric 
sulfenylation of glycine derivative to evaluate their catalytic efficiency 
and enantioselectivity. The asymmetric benzylation of glycine 
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Figure 4: Synthesis of catalyst 1-4.
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Table 1: The asymmetric catalytic sulfenylation of glycine derivatives with 
different catalysts under different reaction conditions.

Entry Catalyst Temperature Base Solvent Yield (%) b ee (%) c

1 1 10°C 50%KOH Toluene 67 67

2 2 10°C 50%KOH Toluene 64 44

3 3 10°C 50%KOH Toluene 65 84

4 3 4°C 50%KOH Toluene 60 84

5 3 20°C 50%KOH Toluene 73 76

6 3 10°C 50%NaOH Toluene 60 78

7 3 10°C CsOH.H2O Toluene 68 82

8 3 10°C 50%KOH CH2Cl2 74 55

a. The reaction was carried out with 1.1 equiv. of sulfenylation reagent and 20.0 
equiv.of 50% alkaline solution in the presence of 10 mol% 1-3 in different organic 
agents under the given conditions.  
b. Isolated yields.
c. Enantiopurity was determined by HPLC analysis of benzylated imine using 
a chiral colume (DAICEl Chiralcel OD-H) with hexanes/ i-PrOH (volume ratio = 
99.5:0.5) as a solvent.
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Table 2: Catalytic asymmetric sulfenylation of glycine derivatives with catalyst 3a.

Entry Product Ar Times(h) Yield (%) b ee (%) c

1 7a Ph 18 65 84

2 7b 4-methylpheny 48 55 70

3 7c 4-methoxyphenyl 36 54 88

4 7d 4-chlorophenyl 24 85 50

5 7e 4-bromophenyl 18 80 45

6 7f benzyl 18 60 85

a. Reaction was carried out with 1.1 equiv. of sulfenylation reagents and 20.0 
equiv. of 50% aqueous KOH in the presence of 10 mol% 3 in toluene under the 
given conditions.
b. Isolated yields. 
c. Enantiopurity was determined by HPLC analysis of benzylated imine using 
a chiral colume (DAICEl Chiralcel OD-H) with hexanes/ i-PrOH (volume ratio = 
99.5:0.5) as a solvent. 

derivative (6) was chosen as a model reaction to optimize the reaction 
condition and the results were list in Table 1.

As shown in Table 1, of all the catalysts investigated, catalyst 
3 was the best one with the highest yield and best ee value. The 
enantioselectivities did not change much as temperature changed, and 
10°C was the best temperature. Different bases were also investigated, 
and 50% of the aqueous potassium was better than aqueous sodium 
hydroxide and solid cesium hydroxide. Of all the solvents investigated, 
toluene gave the best enantioselectivity. So the optimized reaction 
condition was with 3 as catalyst, with 50% aqueous of KOH as base, 
with toluene as the solvent and at 10°C. Having found the optimized 
reaction conditions, we tried to investigate the other sulfenylation 
reagents and the results were listed in Table 2.

As was shown in Table 2, the better yields while the worse 
enantioselectivities were achieved for the sulfenylation reagents 
with electron-withdrawing group on the aromatic ring, while the 
lower yields and the better enantioselectivities were achieved for the 
sulfenylation reagents with electron-donating group on the aromatic 
ring, for the sulfenylation reagent with methoxy group on the 
aromatic ring, the best enantioselectivity was achieved as 88%.

In conclusion, we designed and synthesized a series of new chiral 
phase transfer catalysts (1-3) derived from cinchona alkaloids and 
their applications in the asymmetric sulfenylation of glycine derivative 
were also investigated, and mediate to high yields and mediate to high 
ees were achieved with 3 as catalyst. Further work is under to under 
the mechanism of the reaction and to increase the enantioselectivity.
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