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diameter. Thus, the leakiest vasculature, such as tumor, still presents 
the barrier for nanoparticle transport across a layer of endothelial 
cells. Here we describe the transport of nanoparticles not through 
junctions but across the endothelial cells via a caveolar pathway. This 
trans cellular pathway regulates the transport of plasma proteins and 
nutrients in the endothelium and deep tissues [4], so it could be used 
to deliver therapeutic nanoparticles.

A caveolae is a flask-shaped in vagination on the plasma 
membrane and does not exhibit observable coating, unlike clathrin-
coated vesicles [8]. The main protein made of caveolae is caveolin-1 
[9] which helps to give rise to the caveolar flask-shape and also serves 
as a scaffold protein to regulate caveolae trafficking [10]. It is estimated 
that a caveolae consists of 144 caveolin-1 proteins. Cholesterol in a 
caveolae is also rich with 100 times greater than caveolin-1proteins 
[8]. Glycosphingolipids (such as, mono sialotetrahexosylganglioside) 
and sphingomylin are also enriched in caveolae compared to the 
plasma membrane proper [8]. Caveolae thus represent specialized, 
morphological sphingolipid-cholesterol compartment that is 
stabilized by caveolin-1 [8-10].  

Caveolae occupy at least 70% of the total endothelial membrane 
in lung blood capillaries [4]. They can “bud” or “pinch” from the 
lumen side of the endothelial cell plasma membrane and transport 
their cargo to the basal side of the monolayer [8]. However, the 
signaling mechanisms regulating caveolae-mediated transcytosis are 
not well understood.  It is believed that plasma proteins exploit the 
caveolae-mediated transcytosis to transport nutrients in the tissues. 
For example, albumin, an abundant plasma protein, could bind to a 
60 kD a glycoprotein (gp60) on the endothelial cell surface [11, 12].  
Binding to gp60 activated Src kinase resulting in phosphorylation of 
caveolin-1, gp60, and dynamin-2 (a “pin chase” associated with the 
neck of the caveolar in vagination) that initiated budding and release 
of caveolae [12].   The mechanism of trafficking of caveolae to the 
opposite side of vascular endothelial barrier and how caveolae avoid 
lysosomes are not investigated.   On the basal membrane caveolae 
were shown to fuse to plasma lemma SNARE (soluble N-ethyl 
maleimide-sensitive factor attachment protein receptors) machinery 
where they discharged their contents [13].

The caveolar size is from 50 to 100 nm characterized using 
transmission electron microscopy (TEM) [4]. We recently 
demonstrated that caveolae of human lung micro vessel endothelial 
cells were able to internalize albumin-conjugated nanoparticles 
with the size from 20 to 100nm in diameter [14-16]. Using live cell 
co focal imaging [14] we observed the trafficking of caveolar loaded 
with albumin-conjugated nanoparticles and the caveolar pinched-off 
to form intra cellular vesicles and vectorially migrated to the basal 
membrane where they were released into the underlying tissues. An 
important aspect of caveolae-mediated transcytosis of nanoparticles 
was that it favored the transport of albumin because of the presence 
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Nanomedicine is the nanotechnology application in pharmaceutics 
and medicine, and is a new frontier of inter disciplinary research 
including chemistry, materials science, pharmaceutical sciences, 
molecular biology and biomedical engineering [1]. Nanomedicine has 
shown the potential to transform the current medicine, for example 
personalized medicine will be designed based on genetic differences 
using nanotechnology tools.Thus, nanotechnology has enabled the 
design and manufacture of multifunctional nanoparticles which 
possess novel properties and biological functions [2]: 1) Increased 
tissue deposition and pharmacodynamics of water-insoluble drugs; 
2) precisely targeted delivery of drugs into diseased tissues; 4) 
Combinational therapeutics based on co-delivery of multiple drugs 
in single nanoparticles; 5) imaging drug tissue accumulation and 
locations, and quantitatively monitoring drug pharmacodynamics; 6) 
controlled release of drugs; and 7) real-time readouts oftherapeutic 
efficacy in vivo. 

Translation of nanomedicine in clinics still remains challenging 
because most of administered therapeutic nanoparticles are taken up 
by the reticulo-endothelial system of the liver rather than diseased 
organs resulting in systemic toxicity [3]. This poses a fundamental 
question of how these therapeutic nanoparticles move in the 
bloodstream. In other words, at the molecular level, how do therapeutic 
nanoparticles interact with endothelial cells lining the lumen of blood 
vessels? The endothelial monolayer presents a real barrier for the 
transport of nanoparticles because the openings of inter-endothelial 
junctions (the gaps between contiguous endothelial cells) have 
average size of 3 nm [4].  The restrictive junctions also depend on 
tissues, whether the endothelium is continuous or non-continuous, 
whether it is fenestrated or not [5].  The blood-brain barrier has been 
found a most restrictive layer based on its highly developed tight 
junctions consisting of claudins [6]. Nanotechnology cancer targeting 
therapeutics is based on a hypothesis that nanoparticles transport 
more readily across the leaky vasculatures of tumors because tumor 
blood vessels are permeable [2].  However, the experiments showed 
that tumor vessel endothelial junction was 12 nm wide [7] which is 
far smaller than widely-used therapeutic nanoparticles of 100 nm in 
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of albumin binding proteins present on the caveolar membrane [14]. 
We also showed that albumin nanoparticles of 20 nm in diameter 
preferentially utilized the caveolar pathway in contrast to particles 
made of 100nm [14]. These results offer a rationale for delivering 
drugs conjugated toalbumin nanoparticle to underlying tissue. 

In conclusion, albumin-conjugated nanoparticles of 20 nm in 
diameterare effectively internalized by caveolar, suggesting that 
the caveolae pathway is a novel approach to deliver therapeutic 
nanoparticles across blood-endothelial barrier.  However, there 
are many open questions to be addressed. Among them is whether 
this approach is effective in delivering therapeutic nanoparticles 
and whether pharmaco kinetics of drugs and proteins are enhanced 
by this mechanism.  How do we design therapeutic nanoparticles 
to target to caveolar in vagination on the membrane? Another 
important question is whether albumin-conjugated nanoparticles can 
be modified to induce trans cellular delivery to specific organs such 
as the brain.  Further studies are needed to identify the organ specific 
caveolar proteins that might be present and toassess the usefulness 
of exploiting the caveolae-mediated transport pathway for efficient 
delivery of drugs and biologics across the vascular endothelial barrier. 
To dissect these questions, it is needed to develop novel in vivo imaging 
tools, such as in travital microscopy [17], and using these tools we can 
real-time visualize the nanoparticle uptake by caveolar and trafficking 
of caveolar with their cargo in microvasculature of a mouse. These 
results will enable the design of therapeutic nanoparticles to target 
caveolar pathway of efficiently delivering drugs in cancer.  
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