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Abstract

Food, textiles, fuel, and raw materials are produced through agriculture, 
all essential for human survival. At the same time as the human population is 
reaching previously unheard-of heights and continuing to grow, this function 
must be fulfilled in the current environment of environmental sustainability, 
climate change, and the continued viability of agricultural activities to provide 
for both subsistence and livelihoods. Remote sensing has the potential to 
support the adaptive evolution of agricultural methods to meet this significant 
challenge by consistently providing data on crop status throughout the growing 
season at various scales and for multiple actors. Significant improvements in 
capabilities, particularly the creation of spectral-temporal profile models, can 
be used for crop identification. As inputs to crop growth and yield models, the 
same model form can be used to estimate crop development stage, leaf area 
index, and canopy light interception. We have taken the data from six important 
crops and compared the spectral pattern and leaf properties to understand 
the rule and potential of nanoscale remote sensing to identify crop health at 
the growing stage. Understanding Crop breeding, monitoring agricultural land 
usage, predicting crop yields, and ecosystem services related to soil and water 
resources or biodiversity loss is crucial. 

Keywords: Crops vegetation; Precision farming; Ecosystem services; 
Chlorophyll

Research Article

Crop Identification and Health Assessment Through 
Nanoscale Spectral Remote Sensing Inputs

Muhammad Usman Saeed1; Imdad Ullah1*; Saeed 
Ahmad2

1School of Economics, Bahauddin Zakariaya University, 
Multan, Pakistan
2Language Centre, University of Eastern Finland, Finland

*Corresponding author: Imdad Ullah, School of 
Economics, Bahauddin Zakariaya University, Multan, 
Pakistan.
Email: muhammadusmansaeed66@gmail.com

Received: October 15, 2024; Accepted: November 04 
2024; Published: November 11, 2024

Introduction
History has documented significant and irregular variations in 

crop output worldwide. Crop production has varied dramatically over 
the previous three decades, even as new, higher-yielding crop types 
and improved production techniques have been deployed. Effective 
crop production, processing, distribution, and marketing decisions 
depend on timely and precise crop production predictions and 
estimates [22,23]. Understanding agricultural conditions worldwide 
is particularly planting bed to a need for accurate, current information 
on global food supplies; decisions on plan-recurrent selling, storing, 
transporting, and buying must be made with partial information. 
However, only a few countries have adequate systems for obtaining 
and reporting crop production statistics; accesses vary significantly 
from country to country. 

During the past few years, we have discovered that remote sensing 
from aeronautical platforms may deliver precise, fast data on crop 
output. Large-area crop surveys are made possible by the synoptic 
view of agricultural landscapes afforded by multispectral sensors on 
satellite platforms in conjunction with computer-aided analytical 
techniques [1]. The Large Area Crop Inventory Experiment (LACIE) 
amply proved the viability of using satellite-acquired multispectral 
data to identify and estimate the area of one crucial crop, wheat. Later, 
the USDA, NASA, and NOAA's AgRlSTARS program later expanded 
the LACIE crop identification-area estimation methodology to 
accommodate other crops and locations [10,11].

All energy that travels in a harmonic wave pattern at the speed 
of light is known as Electromagnetic (EM) energy. A harmonic 
wave pattern comprises waves that happen at regular intervals. The 
EMR has both a wave model and a particle model. The wave model 
explains the propagation (movement) of EM energy. The interaction 
between this energy and the substance, however, is what allows for 
its detection. In this interaction, photons, which are numerous 
individual bodies/particles with such particle-like qualities as energy 
and momentum, behave like EM energy contain reviews on the 
nature of EM radiation and physical principles [9,11]. The EMS is a 
continuum of energy propagating through vacuums like space at the 
speed of light (3 × 108 ms-1), with wavelengths ranging from meters 
to nanometers. The EMS covers a wide range of wavelengths, from 
10-10 µm (cosmic rays) to 1010 µm (radio waves) [21]. The EMS's 
ultraviolet, visible, infrared, and microwave sections have all been 
broadly classified. However, these distinctions were made at random. 
The boundary between one nominal spectral region and the next 
must be clarified. The region of the EMS where optical techniques of 
refraction and reflection can be utilized to focus and divert radiation 
is known as the visual wavelengths, which range from 0.30 to 15 µm. 
EM energy can be refracted and reflected by solid materials at these 
wavelengths. The reflective section of the spectrum is often defined as 
the range between 0.38 and 3.0 µm [12,33]. Most energy detected at 
these wavelengths is solar radiation reflected off Earthly objects.
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The term "ultraviolet," which refers to an area of short-wavelength 
radiation between the X-ray zone and the visible range (0.40 to 0.70 
µm) of the EMS, literally means "beyond violet." The near ultraviolet 
(0.32 to 0.40 µm), the far ultraviolet (0.32 to 0.28 µm), and the 
extreme ultraviolet (below 0.28 µm) are three standard divisions of 
the ultraviolet region. These divisions are often called UV-A, UA-B, 
and UA-C, respectively [24].

The Near-Infrared (NIR) ranges in wavelength from 0.72 to 1.30 
µm, the middle infrared/shortwave infrared ranges from 1.30 to 3 µm, 
and the far infrared ranges from 7.0 to 15.0 µm. The infrared region 
spans from 0.72 to 15 µm and has been split into these three main 
divisions. The behavior of radiation in the NIR range is similar to that 
in the visible spectrum. As a result, films, filters, and cameras made 
for visible light can also be used for remote sensing in the NIR [21,38]. 
The far-infrared region (7.0 to 15 µm) includes wavelengths that go 
well beyond the visible spectrum and extend into areas next to the 
microwave spectrum. The Earth mainly emits far-infrared radiation. 
No particular name typically refers to the range of wavelengths from 
3.0 to 7.0 µm [35].

The microwave spectrum spans a distance of 1mm to 1m. The 
longest wavelengths frequently employed in remote sensing are 
microwaves. The thermal energy of the far-infrared region shares 
many characteristics with the shortest wavelengths in this range. It is 
further separated into various frequency bands frequently employed 
in remote sensing (1 GHz = 109Hz). In contrast to the optical 
portion of EMS, where spectral bands are defined by wavelength, the 
microwave region of EMS often uses frequencies to do so [3-5]. About 
4% of all solar radiation entering the planet is reflected into space 
by the Earth's land surface. The atmosphere reflects the remaining 
energy or absorbs it and emits it as infrared radiation. The varied 
surface features of the Earth absorb and reflect radiation at various 
wavelengths in varying amounts. The spectral response pattern of an 
object refers to the amount of energy it emits or reflects throughout a 
broad range of wavelengths [12,13]. These responses have frequently 
been referred to as spectral signatures because spectral responses 
obtained by distant sensors over a variety of features often allow an 
assessment of the type and condition of the features. Even though 
many Earth surface features exhibit distinctive spectrum reflectance 
and emittance characteristics, these traits produce spectral "response 
patterns" rather than spectral "signatures." The term signature tends 
to imply an absolute and singular pattern, which is why this is the 
case. The spectral patterns seen in the natural world do not work like 
this [9].

The spectral reflectance pattern of the main elements of the terrain, 
including the soils, plants, and shallow and deep water. Vegetation is 
highly noticeable in its ability to absorb incident light in the blue (400 
to 500 nm), red (600 to 700 nm), and shortwave-infrared regions (at 
1400, 1900, and 2600 nm) wavelength ranges (Bian et al. 2016). While 
chlorophyll, which gives plants their green color, is responsible for 
absorptions in the blue and red spectrum, water absorbs incident light 
in the shortwave-infrared range [8].

Contrary to vegetation, water reflects more in the blue region 
(400 to 500 nm) and absorbs most in the NIR area (700 to 1300 nm), 
according to this comparison of these two spectral response patterns. 
Notably, the NIR area is where vegetation reflects the most. Using air/

space carried multispectral images, this contrasting feature enables 
vegetation recognition from water bodies [28]. On the other hand, 
soils, except for two absorption bands centered on 1400 and 1900 nm, 
have a rising trend in their spectral reflectance pattern with increasing 
wavelengths.

The word "hyper" in "hyperspectral" refers to the numerous 
measured wavelength bands and signifies "over" as in "too many." 
Because hyperspectral images are spectrally over determined, so 
they provide sufficient spectral information for identifying and 
distinguishing objects [4]. The word "hyper" in "hyperspectral" 
refers to the numerous measured wavelength bands and signifies 
"over" as in "too many." Because hyperspectral images are spectrally 
over determined, so they provide sufficient spectral information for 
identifying and distinguishing objects [1].

Every object, alive or inanimate, has a unique spectral signature 
encoded in the spectrum of the light it reflects or emits. The constituent 
substances' electronic and vibrational energy states govern the object's 
distinct spectrum properties [29]. Through various spectrum analysis 
techniques, these spectral features enable that object or importance to 
be recognized.

The strength of the measurements of the spectral response 
patterns in several contiguous, narrow spectral bands has been 
acknowledged. Landsat -TM's spectral bands are denoted by the 
numerals 1 through 7, and their bandwidths are shown in distinct 
blue lines. At seven locations between 350 and 2,500 nm, the spectral 
response of green vegetation has been combined and given a blue 
color [32,35]. Green is used consistently throughout to represent the 
hyperspectral response pattern of green vegetation. Green foliage has 
a constant spectral response pattern, except between 1,800 and 2,000 
nm. Due to discontinuous and broad spectral bands, the thematic 
Mapper could not record the water absorption band at 1,400 nm and 
two absorption patterns in the near-infrared plateau at 1,000 nm and 
1,200 nm. Similarly, it is possible to create spectra for different terrain 
features, such as soil, water, and plants.

The hyperspectral data are challenging to visualize simultaneously 
due to their several spectral bands. Making an image cube is one 
method of comprehending the patterns in the data because each 
ground scene can be composed of hundreds of images (bands). The 
spatial dimensions that display the terrain's ground surface are the 
x and y axes. All the other bands make up the z-axis as if they were 
piled like a ream of paper and turned on their side. The top image is 
a three-band composite created from three bands (often R, G, and 
B) for presentational purposes. The colors streaming away from the 
edges are the edge pixel values along the z-axis, which are rainbow-
colored from blue to red [12,37]. This way, one can observe how the 
spectra vary and that a tremendous amount of information is stored 
in ranges by following an edge pixel in this cube along the z-axis.
Table 1: Commonly used microwave frequencies.

Band frequency (GHz) Wavelength (cm)
P band: 0.3 – 1 30 – 100
L band: 1 – 2 15 – 30
S band: 2 – 4 7.5 – 15
C band: 4 – 8 3.8 – 7.5

X band: 8 – 12.5 2.4 – 3.8
Ku band: 12.5 – 18 1.7 – 2.4
K band: 18 – 26.5 1.1 – 1.7

Ka band: 26.5 – 40 0.75 – 1.1
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A platform, instrumentation (sensor), data reception, processing, 
and analysis comprise a remote sensing system that measures, 
observes, and forecasts the Earth's system's physical, chemical, and 
biological elements. Our objective of this study is to identify the rule 
of the nanoscale spectral remote sensing inputs to monitor the health 
of the crop and compare the spectral signatures pattern and the leaf 
characteristics of the six different vegetables and cereal crops.

Material and Methods
Data

The optical characteristics of crop leaves can be measured 
through experimental processes, and deterministic methods based 
on various models of light interactions with crop leaves can also be 
created. The underlying physics and the leaf 's complexity set these 
models apart [36]. The simplest ones treat the blade as a single 
scattering and absorbing layer. The structure, size, location, and 
molecular makeup of each cell have been defined in detail in the more 
complex ones. Whatever the method, these models have increased 
our comprehension of how light interacts with plant leaves. They can 
be divided into many classes and ordered according to increasing 
complexity. We collect the data for five crops from https://ecosis.org/
package/leaf-optical-properties-experiment-database--lopex93-

Satellite-based remote sensing systems play a vital role in 
agricultural applications by providing a wide spatial coverage and 
a systematic acquisition of data. These systems consist of Earth-
observing satellites equipped with various sensors designed to capture 
different spectral bands of the electromagnetic spectrum  (Figure 1).

Agriculture plays a vital role in global food security and 
sustainable development. To ensure optimal crop production and 
resource management, accurate and timely information about crops 
is crucial. Agricultural remote sensing offers a non-intrusive means 
of acquiring valuable information about crops and their surrounding 
environment. 

The Landsat program, initiated by NASA and the United 
States Geological Survey (USGS), has been a cornerstone in Earth 
observation since the launch of Landsat-1 in 1972. Currently, 
Landsat-8 and Landsat-9 are the operational satellites in this series. 
Landsat satellites capture imagery in several spectral bands, including 
visible, near-infrared, shortwave infrared, and thermal infrared. The 
spatial resolution of Landsat imagery is typically 30 meters, providing 
moderate detail for agricultural monitoring. Landsat satellites have a 
revisit time of approximately 16 days, allowing for regular monitoring 
of agricultural areas. The Landsat data archive, available to the public, 
provides a valuable resource for long-term analysis of land cover, crop 
health, and vegetation dynamics [18,34] .

The European Space Agency (ESA) operates the Sentinel series 
of satellites, which are part of the Copernicus program, an initiative 
aimed at providing open and free access to Earth observation data. 
Sentinel-2, in particular, is of great importance in agricultural remote 
sensing [34]. It consists of a constellation of satellites equipped with a 
multispectral imaging instrument that captures imagery in 13 spectral 
bands, ranging from the visible to the shortwave infrared region. 
Sentinel-2 has a higher spatial resolution than Landsat, with 10-meter 
and 20-meter bands, enabling detailed analysis of agricultural fields. 

Moreover, its revisit time is around 5 days, offering more frequent 
data acquisition, especially beneficial for time-critical agricultural 
activities like crop monitoring and disease detection [25,30].

Remote sensing data offer wide spatial coverage, moderate to high 
spatial resolution, and varying spectral bands, enabling the monitoring 
of crop health, land cover changes, and vegetation dynamics. The 
availability of open data from these systems has fostered research and 
innovation in agricultural remote sensing, contributing to improved 
decision-making and sustainable agricultural practices (Figure 2).

B. Methodology

Allen and Richardson [2] introduced the first plate model, 
which depicted a leaf as an absorbent plate with rough surfaces that 
led to Lambertian diffusion. Here, the variables are the absorption 
coefficient and the index of refraction. The reflectance spectrum of 
a small crop leaf with few air-cell wall contacts is accurately modeled 
by this model. By seeing non-compact leaves as collections of N plates 
separated by N-1 air spaces, the same authors quickly expanded the 
model to include them. Similar to the scattering coefficients in the 
Kubelka-Munk model, this extra parameter N describes the interior 
structure of the leaf. The prospecting model (Leaf Optical Properties 
Spectra), now widely used in remote sensing, was created in this 
manner [15]. The hemispherical reflectance and transmittance of 
different plant leaves (monocots, dicots, or senescent leaves) spanning 
the solar spectrum from 400 nm to 2500 nm were accurately simulated 
by this algorithm, which was among the first radiative transfer codes 
to do so. Several versions that have been validated on various datasets 
have been widely distributed in the community [14,15].

  (1)

  (2)

Where, 

α = maximum incidence angle defining the solid angle Ω

n = refractive index

 = transmittance

θ = transmission coefficient of the plate

 = is the transmissivity of a dielectric plane surface

Results and Discussion
Optical Properties of Aample Crops Leaves

Most incident radiation passes through the leaf and interacts 
with its interior structure and parts. Three zones, each linked with 

https://ecosis.org/package/leaf-optical-properties-experiment-database--lopex93-
https://ecosis.org/package/leaf-optical-properties-experiment-database--lopex93-
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a separate phenomenon affecting leaf reflectance, transmittance, and 
absorption, have been identified in the 400 to 2500 nm wavelength 
range. The reflectance of leaves is relatively low in the visible part of 
the spectrum due to leaf absorption, which results in low reflectance 
(and transmittance). But there is a noticeable increase in reflectance in 
the near-infrared spectrum. In general, leaves reflect 40 to 50 percent 
of incident energy at these wavelengths and absorb less than 5 percent 
[19,35]. The many reflections in the internal mesophyll structure, 
which are brought on by the variations in the refractive indices of the 
cell walls and intercellular air cavities, account for the high reflectance 
as well as transmittance in the near-infrared "plateau" between 800 
and 1400 nm. Reflectance differences are usually more extensive in 
the near-infrared than in the visible wavelengths because interior 
leaf structure differs significantly among species. The near-infrared 
reflectance of leaf layers increases due to repeated transmittance and 
reflectance (Figure 3), reaching its maximum or infinite reflectance 
at roughly eight leaf layers, or 70 to 80 percent. The reflectance of 
green vegetation in the middle-infrared region (1400-2500 nm) of the 
spectrum is dominated by large water absorption bands that occur 
near 1400, 1900 and 2500 nm; however, the water content of leaves 
also has a significant impact on the areas in between these absorption 

bands. An equivalent water thickness can be absorbed to simulate 
the spectral absorption characteristics in this region, where leaf 
reflectance is inversely related to the total amount of water in the leaf 
[16,31].

Reflectance, transmittance, and absorption by leaves depend 
on the concentration of pigments and water and the internal cell 
structure of each species. The type of leaf, stage of development, 
senescence, and stress all affect these physiological and morphological 
quantities. Regarding leaf type, there are notable differences between 
the reflectance properties of dicotyledon leaves with dorsiventral 
mesophylls and monocotyledon leaves with undifferentiated 
mesophyll, particularly in the near-infrared region [17]. When leaves 
grow and mature, their visible reflectance decreases, and their near-
infrared reflectance increases. The mesophyll in adult leaves has more 
significant intercellular air gaps than the more compact immature 
leaves, which is thought to be the cause of this phenomenon [20]. 
In contrast to maturation, senescence causes visible reflectance to 
increase due to chlorophyll loss and infrared reflectance to decrease, 
though relatively less so than the increase in visible reflectance. 

Numerous stresses, including nutrient deficiencies, salt, water 
deficits, and insect and disease damage, also influence plant leaves' 
optical properties. These stresses are typically accompanied by 
reduced chlorophyll production, causing increased reflectance in 
the visible region. In the infrared, reflectance is usually lowered by 
these types of strains, while stress producing a loss of water results 
in enhanced infrared reflectivity. However, alterations in reflectance 
become noticeable once the leaves are almost 75% turgid [12,36].

Phisical Properties of Sample Crops Leaves: One of the most 
crucial components of a plant is the leaf. The size, shape, thickness, 
mass, and color of leaves on various plants vary greatly. Inside all 
leaves are substances called pigments, which give leaves their colors. 
Green leaves receive their color from a green component called 
chlorophyll. The process of photosynthesis is aided by chlorophyll. It 
takes in sunlight's energy. 

The leaves use the power to produce sugars, food for the plant. 
Understanding the variation within and between the crop's leaves 

Figure 1: Remote sensing processes.

Figure 2: Structure of remote sensing data to provides the information 
about crop health, soil moisture content, and nutrient availability.

Figure 3: Spectral signatures pattern of the six major crops including cereal 
(Corn and rice) oil producing (soybean and sunflower), and vegetable (Irish 
potato and tomato).



Ann Agric Crop Sci 9(5): id1168 (2024)  - Page - 05

Ullah I Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

could help to improve the relevant crop yield and save environmental 
resources. We have experimental data for six crops with five leaves 
samples for each crop [22,26]. The average thickness of the leave was 
found to be around 200 µm sunflower leave have a maximum value of 
327 µm with higher variation. Vegetable crops have higher equivalent 
water thickness as compared to cereal crops. Rice leaf mass was 
observed at 0.0057 (g/cm2), which is greater than all other studied 
crops, while potato and tomato leaf mass was 0.0023 and 0.0024 (g/
cm2) (Figure 4). Sample results showed a significant variation between 
the fresh leave weights and less variation between the dry weights of 
the studied crops. Vegetables leave have greater water content, so their 
fresh leave weight is higher than the other crops (Figure 5).

Many studies have used the solar spectral domain and the crop 
leaves physical information to estimate crop yield by developing the 
vegetation indices [16] and Gross Primary Production (GPP), canopy 
radiation use efficiency, crop coefficient, as well as crop nitrogen 
content, which was also investigated using the fluorescence signal, 
while the near-infrared domain was mainly used to detect crop water 
stress [27,33]. The retrieval of a secondary variable often requires the 
exploitation of different sources of information, which encompass the 
fusion of data provided by various sensors and over different spectral 
domains, as well as ancillary information related to the functioning of 
the soil-plant-atmosphere continuum, meteorological information or 
phenology [6,31].

Conclusion
Crop production, distribution, and marketing are all highly 

dependent on crop monitoring, and multispectral remote sensing 
is widely acknowledged as having significant promise for crop 
identification, area estimation, and condition assessment. Examining 
canopy reflectance measurements, Landsat data, and canopy radiation 
models during the past few years has led to a better knowledge of 
crops' spectral and biophysical characteristics. It has been observed 
that the spectrum pattern of the leaves of the different crops 
provides information connecting crop development. The temporal 
profile approach provides a conceptual framework consistent 
with crop growth characteristics, to which more spectral variables 
may be added when new sensors add more data. This document 

Figure 4: Representation of the average value and the standard deviation 
of the six sample crops leaves mass, equivalent water thickness, and leaf 
thickness.

Figure 5: Representation of the fresh and dry leaf of six sample crops. Bar 
represent the average value of the sample leafs and lines represent the 
standard deviation of the sample weights.
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makes recommendations for several particular study areas. One 
is integrating data and models of spectral reflectance with work on 
canopy structure and light absorption. Using a spectral estimate of 
LA1 and canopy light interception as inputs to crop development and 
yield models is one of the most promising remote sensing techniques; 
further study in this area is required. It is necessary to continue 
developing and improving crop radiation models by incorporating 
the effects of specular reflection and creating models for imperfect, 
nonhomogeneous crops. To empirically describe vegetation and 
advance canopy radiation transfer models, it is necessary to collect 
data sets that include leaf optical characteristics, canopy geometry, 
and canopies' bidirectional reflectance distribution functions. Non-
nadir observations, high-resolution spectrometry, combined optical 
and microwave measurements, and polarization data to estimate 
specular reflection are other study topics with tremendous potential.

In conclusion, there have been considerable improvements in the 
technical ability to acquire and interpret multispectral data and in 
the scientific understanding of the spectral features of crops. Remote 
sensing applications can offer significant benefits in agricultural 
systems, including early crop stress detection, efficient resource 
management, improved yield forecasting, and optimized pesticide 
application. However, data availability, cloud cover, and expertise 
require attention. Overcoming these challenges can unlock the 
full potential of remote sensing in revolutionizing agriculture and 
promoting sustainable farming practices.
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