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to soil fertility, in the regression kriging [15] or kriging with external 
drift techniques [16]. 

Each geostatistical approach has advantages and drawbacks. The 
choice of the best method depends on the specific case under study, 
data availability and presence of a spatial trend.

Cokriging considers two or more variables contemporarily but 
needs that variables be related. Moreover it is computing demanding 
because of the modelling of simple, and cross variograms which 
describe the correlation of pairwise variables. Kriging with external 
drift describes the spatial changes in the relationship between 
variables, but such relationship must be linear and many software 
deal with only a single covariate. 

Geostatistics may help to solve different aspects of PA. It might be 
profitably applied to guide and optimize the number and location of 
soil samples, based on the consideration that sampling distance should 
be at an interval within the correlation range of spatial variation [17-
19]. Starting from a variogram model, it is possible to determine a 
sampling scheme with specified precision [20,21], by also using 
auxiliary information coming from satellites, geophysical sensors or 
topographic data as indicators of the likely scale of variation in the 
soil or crop [22]. 

Many types of data may be obtained through different sources 
such as field sampling, laboratory analyses and proximal and remote 
sensors (e.g. spectral, electrical, electromagnetic or radiometric 
measurements of soils or of plants) with different spatial and temporal 
scales [23]. Such big amount of available data can be treated through 
a multivariate geostatistics technique called “data fusion” [24], 
appropriate for integrating data coming from different input and for 
adjusting them to the same spatial resolution [13,25,26].

Research in precision agriculture is also focused on the use of 
management zones, representing subfield regions with homogeneous 
characteristics within which a single rate of a specific crop input 
is appropriate [27]. Generally, the identification of subfield areas 
is difficult because of the complex combination of factors which 
could influence the effectiveness of a specific input (i.e. fertilization, 
irrigation, pesticide) that affects variation in response variables such 
as requested quality and quantity of crop yield. One possibility to 
summarize the variation of attributes or limiting factors affecting 
agricultural production, is to use factorial kriging [4,11,28] which 
allow to quantify and reduce spatial variability of multivariate data 
to only a few factors, related to different spatial scales. Such factors, 
summarizing the variability of multivariate data, can be used to divide 
the field in areas of size manageable by farmers. Further, polygon 
kriging can be used to assess the effectiveness of field delineation 
based on soil attributes [3,29].

Different studies have highlighted the benefits of PA deriving 
from the increasing of yields and/or lowering of the quantity of 
inputs, even though the extra-investment needed for implementing 
PA technologies and practices could be high. Since collecting 
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Agriculture is facing two challenges which are apparently 

contrasting: enhancing food production and promoting environmental 
sustainability. According to projections included in the 2016 World 
Population Data Sheet [1], the world population has been forecasted 
to reach 9.9 billion in 2050. Such increase in population would result 
in a decrease of land availability for agriculture and, in order to 
provide sufficient food to future generations, farmers should try to 
produce ‘more from less land’ [2]. Since soil is a non-renewable and 
limited resource, it is required that food production should follow 
an environmentally sustainable agriculture. In this perspective, the 
farm system could be considered as a decision making unit [3] within 
which soil properties vary both spatially and temporally [4]. This is 
mainly a result of the interaction of many biotic, abiotic and climate 
factors [5].

Precision Agriculture (PA) offers the potential for both increasing 
crop yields and ensuring food security. In contrast to the conventional 
farming that treats a field uniformly, PA allows to meet the actual 
crop site-specific needs, managing natural resources (such as soil, 
nutrients, yield, field topography) and crop [3,6,7], based upon spatial 
variation.

Geostatistics [8] provides the tools to quantify the spatial 
variability of environmental properties, taking into account data 
spatial autocorrelation. Moreover, it allows producing continuous 
maps, starting from sparse data. The variogram is a mathematical 
model of spatial dependence, describing the data variance between 
two locations and their separation distance [9]. By using the 
variogram and different interpolation techniques [10], generally 
known as kriging, the variable can be estimated at unsampled 
locations. Differing from classic statistical interpolators, geostatistics 
provides kriging variances or standard errors which can guide to 
the reliability of the estimate [2]. The application of geostatistical 
methods requires an assumption of data stationarity but such 
condition is not always verified. Multivariate geostatistics may allow 
to simultaneously quantify local changes in the spatial relations of 
several environmental properties (Cokriging) [11] or reveal the 
influence of ancillary data (e.g. landscape attributes) to model 
the primary variable in the regression kriging [15] or kriging with 
external drift techniques [12,13]. For instance, topographic attributes 
[14] or electromagnetic data have been used as auxiliary variable to 
improve the estimation of soil texture and other properties related 
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sufficient data to fully implement the system may take a long time, PA 
should be seen as a long-term investment. To account the principles 
of PA, in fact, farmers should invest for: (i) data collection and 
positioning system, (ii): data processing and (iii) inputs application 
such as computer-guided fertilizer spreader or seeder. Although the 
economic advantages of PA cannot be generalizable, the higher the 
variability of the field, the higher the benefit of PA.

The present short note highlighted the potential of geostatistical 
approaches in PA, with the aim to enhance its application and 
diffusion that is actually limited in reality, due to the few number 
of user-friendly software products. In addition, PA has not been 
uniformly applied to all croplands, since it has been mainly focused 
on arable lands [30]. Nowadays, one of the most limiting factors to 
the use geostatistics for PA is not only the required number of data 
on soil, plants and environmental properties but converting them 
into useful information for modelling spatial variability. The use of 
proximal and remote sensors may allow collecting data on large areas 
providing the required spatial resolution of information more rapidly 
than traditional laboratory analyses and at a relatively cheaper cost. 
To improve the application of geostatistics to PA, incentive-based 
technologies should be activated and robust decision support systems 
developed. The use of geostatistical methods could help framers and 
managers to understand the causes of the variability of crop yield and 
quality.
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