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Abstract
Alzheimer’s is a leading neurodegenerative disease, but we’re still 

searching for treatments that can truly stop or reverse it. The good news is, 
we’re getting better at spotting it early, even before symptoms show up, thanks 
to advances in brain imaging. While the “amyloid hypothesis” (targeting amyloid 
plaques in the brain) has been a major focus for drug development, these anti-
amyloid drugs haven’t delivered the hoped-for clinical benefits. It’s becoming 
clear that other factors, like individual differences in brain resilience (“cognitive 
reserve”), also play a role in how the disease progresses. Newer research is 
exploring other avenues, like targeting tau protein, inflammation in the brain, 
and problems with how brain cells connect. But there are challenges, like the 
high cost of developing brain drugs and the possibility that some people are 
naturally resistant to cognitive decline (“anti-CDR”). To make real progress 
against Alzheimer’s, we need researchers in universities and companies to work 
together, sharing a common goal of better diagnosis and innovative treatments.
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Introduction
Alzheimer’s disease (AD) is a progressive and irreversible 

neurodegenerative disease clinically characterized by impaired 
memory and cognitive function [1]. Despite recent advancements 
in medical care, therapeutic strategies, and dementia research, the 
currently approved treatment can only mitigate the symptoms [2]. In 
AD, a decrease in the level of neurotransmitters such as acetylcholine 
and a rapid loss of neurons localizing in the hippocampal region 
are observed [3]. As AD progresses, coroner plaques composed of 
amyloid β-protein are observed in the brain, and the amounts of tau-
containing neurofibrillary tangles also increase [4]. Research aimed 
at understanding the mechanism of development has been actively 
conducted in various fields, including immunology and statistics [5]. 
Therefore, treatment methods targeting the disease marker protein, 
amyloid, and immune cells essential for plaque clearance have been 
developed [6]. These methods have been introduced as treatment 
methods and drug candidates, but they have not been approved for 
clinical application because an appropriate neuroprotective effect, a 
suitable patient selection method, and a target molecule for AD have 
not been established [7]. The exact cause of AD is still unknown [7]. The 
participation of several factors, including mitochondrial abnormalities, 
protein denaturation and aggregation, and metabolic disturbance, is 
also considered as causative factors of AD [8]. Moreover, as well as 
environmental factors, genetic factors related to presenilin 1, APP, 
and apolipoprotein E are considered as trigger factors for the onset of 
AD [8]. Because numerous factors are considered to be participating 
factors in developing AD, understanding the mechanism of onset and 

development is considered to be the cornerstone for establishing an 
effective treatment or a diagnosis allowing its detection at the very 
early stage [9]. Besides, in addition to understanding AD, it is also 
necessary to establish patient care systems [10]. AD is a degenerative 
brain disease that leads to steady exacerbation and has a considerably 
adverse effect on the patient’s medical and nursing needs [11]. Early 
detection methods and improvements in the patient’s quality of life 
must be developed to promote early care, and it is essential to develop 
medical systems that consider dementia care and nursing care 
together [12]. 

Overview of Alzheimer’s Disease

Currently, Alzheimer’s disease (AD) is one of the most important 
diseases in developed countries (Figure 1) [13]. AD is pathologically 
characterized by progressive and specific degeneration of the central 
nervous system, which preferentially attacks discrete subsets of 
cortical and limbic system neurons [13]. It was clearly admitted 
that amyloid-β (Aβ) deposition, tau-containing neurofibrillary 
tangles produced by the hyperphosphorylation of tau, and neuronal/
synapse loss lead to the pathophysiology of the disease with varying 
contributions in distinct disease stages[14]. The current treatment 
to improve cognitive symptoms is mainly based on acetylcholine, 
either enhancing acetylcholine levels or reducing the breakdown 
of acetylcholine [15]. Other drugs enable cognitive and behavioral 
treatment [16]. Although several disease-modifying drugs that start 
from newly clarified mechanisms of the disease or refinement of past 
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strategies have been expected to be therapeutic, most have failed in 
their late-stage trials so far [17]. Accumulated evidence over the last 
two decades strongly suggests that the oligomeric forms of Aβ, rather 
than Aβ monomers, are the major toxic diffusible species and the key 
etiologic culprit of cognitive decline in AD [18]. On the other hand, 
in tauopathy, tau oligomers and PHF are considered toxic themselves, 
which also spread the pathology [19]. Physiologically, Aβ peptides, 
especially Aβ 1-40, are released from plasma membrane neuronal 
and non-neuronal cells via proteolytic cleavage of amyloid precursor 
protein by secretases [20]. 

Prevalence and Societal Impact

With the rapid growth of aged populations in many countries, 
dementia—of which Alzheimer's disease is the leading cause—has 
become a problem [21]. In Japan, which is the most rapidly aging 
country in the world, it is estimated that 4.6 million people had 
dementia in 2012, and the number is expected to increase to 7 million 
in 2025 [22]. Added to that, the testimony of the seriousness of the 
problem of dementia, the age-specific disability-adjusted life years 
(DALY) of women aged 50–89 as caused by Alzheimer's disease was 
657 years in 2010, and it is projected to increase to 9,610 years in 2060 
in Japan, far outstripping the years of DALY of other major diseases, 
such as cerebrovascular disease, cancer, heart disease, diabetes 
mellitus, and osteoporosis [23]. Alzheimer's disease is the most feared 
disease in the aging society because it deprives people of their dignity 
and autonomy through progressive cognitive decline to the degree 
that they can no longer lead normal lives, while at the same time it 
has a profound, overwhelming effect on their family, the healthcare 
system, and society [24]. 

Current Understanding of Alzheimer’s Pathophysiology

Current understanding of Alzheimer’s development has been built 
and updated through further studies using various model systems 
and experimental approaches [25]. To date, the widely accepted 
hypothesis for Alzheimer’s is the amyloid cascade: the formation of 
Aβ peptide produced by the cleavage of APP by β- and γ-secretases 
[26]. Although this hypothesis is still valid, an increasing number 
of reports have shown results that do not fit well with the ‘amyloid 
hypothesis’ [27]. Only a small number of Aβ 40/42 positive deposits 
have been detected in the brains of dysmorphic Down syndrome 

patients rather than the widely background Aβ oligomer in sporadic 
Alzheimer’s patients [28]. In addition, a polymorphism of α-secretase 
gene activity shortens Aβ peptide formation, reducing the risk of 
developing late-onset Alzheimer’s disease [29].

Considering these findings, several other hypotheses have been 
raised to cover these results, such as mitochondrial dysfunction, 
cholinergic neuron degeneration, and decreased neuron proliferation 
and differentiation [30]. Other observational factors include the 
observation that Alzheimer’s patients suffer from dysregulated energy 
utilization, resulting in brain weight loss, and that insulin receptor 
substrate in human brain tissue is cross-linked to Aβ, which is a key 
finding in type II diabetes [31]. Altered cell cycle control, as a result 
of intracellular neuronal Aβ accumulation, is also involved in the 
pathogenesis [32]. Furthermore, several types of prion diseases share a 
common molecular mechanism with the generation of Aβ oligomers, 
specifically in several kinds of early-onset Alzheimer’s disease and 
amyloidogenic Aβ peptide mutants with prion protein interaction 
[33]. Collectively, true understanding and a cure for this disease must 
derive from the combined knowledge of all of these factors [34].

Current Target Development for 
Alzheimer's Disease

Since 2000, initially targeting AChE and Aβ and changing to 
multi-targeting AD drugs, more than 10 drugs completed clinical 
trials; however, no drug has been registered in the market to date. After 
2010, pioglitazone and insulin, anti-diabetic drugs, were developed 
for Alzheimer’s disease, showing a symptomatic effect [35]. Insulin 
is essential for memory and learning behaviour and has been shown 
that insulin levels decreased in AD brains from 50 years old due to 
central insulin resistance [36]. Human brain insulin absorption is 
very poor due to peptide molecular weight, but insulin nasal spray is 
effective in some people [37]. Currently, intranasal insulin is expected 
to be a curative drug for Alzheimer’s disease [38]. Clinical trials of 
PPAR γ agonist anti-diabetics such as rosiglitazone, pioglitazone, and 
fenofibrate are in progress in phase 3 clinical trials [39].

NMDA or MTHFR/CBS-CTH function, ADEIH serum 
biomarkers are involved in Alzheimer’s disease as therapeutic targets, 
and NMDA inhibition is a cure for glutamatergic excitotoxicity 
(Figure 2) [40]. Bupropion is also an attractive compound that 

Figure 1: Alzheimer’s Disease.

Figure 2: Alzheimer’s disease as therapeutic targets.
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has been developed into an NMDA antagonist [41]. Inhibition of 
homocysteine formation in the methyl group cycle for blood vessels 
and the central lower seating pathway of the nerve reduces the 
amount of cysteine available as a GSH precursor and thus increases 
the speed of the GSH peak after exercise [40]. Formed H2S itself is a 
neurotransmitter and has been proposed as a possible risk factor for 
Alzheimer’s disease by damaging exercise-induced GSH sulfide levels 
[42]. Recently, ROS scavenging of reduced GSH has been reported to 
prevent the neurotoxic effect resulting from enhanced oxidative stress 
[42]. In this review, we discuss the current target development for 
Alzheimer’s disease and the future prospects. 

Beta-Amyloid and Tau Pathology

Basic studies of beta-amyloid pathological alterations and tau 
tangle formation greatly aided in the identification of the connection 
between beta-amyloid and presenilin gene mutations in Alzheimer's 
disease [43]. In recent years, human-induced pluripotent stem cells 
have become important research and development tools, especially 
for the study of neurodegenerative diseases [44]. 

Numerous discussions have also been held regarding the 
development of tau disease after beta-amyloid pathology [45]. 
Numerous therapeutic trials have failed despite the emphasis on 
beta-amyloid-targeting therapy, underscoring the complexity of 
Alzheimer's disease as an illness with various aetiologies [46]. Both 
underlying aetiologies and environmental factors must be taken into 
account in order to properly treat beta-amyloid and tau disease [47]. 
Early-onset Alzheimer's disease was first identified by the presence of 
neurofibrillary tangles and amyloid plaques in the brains of affected 
individuals [48]. 

The genetic basis of the disease has been investigated extensively 
through the use of positional cloning techniques [49]. The 1989 
discovery of the amyloid precursor protein gene and the 1986 
identification of beta-amyloid as a primary constituent of amyloid 
plaques are significant turning points in the study of Alzheimer's 
disease [50]. Researchers tried to create animal models to investigate 
the function of tau protein, a crucial component of tangles, since it 
is connected to microtubule formation [51]. Tau, presenilin 1, and 
presenilin 2 are among the genes linked to early-onset Alzheimer's 
disease that were discovered between 1995 and 2000 [52]. 

Neuroinflammation and Microglia

Alzheimer's disease (AD) is influenced by neuroinflammation 
[53]. Activation of several immune cells in the brain, including 
microglia, which results in inflammatory reactions that are triggered 
by the production of cytokines and neurotransmitters are various 
symptoms and factors that can be observed[54]. 

It has been proposed for more than a century that inflammation 
plays a part in AD pathophysiology, but only recently has it drawn 
international scientific attention [55]. Amyloid plaques are usually 
surrounded by active microglia in the postmortem brains of AD 
patients [56]. Microglia can be good or bad, depending on their 
activation state [57]. In general, chronic excessive inflammation 
is detrimental and is believed to have a role in AD pathogenesis by 
causing an overabundance of different cytokines to be released [58]. 
Recent research has connected the development of AD to gene loci 
related to microglial activity [59]. In both the developing and adult 
brain, microglia also contribute to synaptic pruning by engulfing 
undesirable connections [60]. However, multiple independent 
investigations have shown that neurotoxic proteins released by AD 
neurones might result in increased synapse engulfment activity, 
which accelerates synaptic loss [61].

Neurotransmitter-Based Therapies

Targeting synaptic dysfunction in Alzheimer’s disease (AD) 
is a vital approach to tackle its complex pathogenesis [62]. The 
cholinergic hypothesis posits that cholinergic deficiencies are the 
primary cause of disrupted synaptic information processing [63]. To 
mitigate early-stage AD symptoms such as mood disturbances and 
cognitive decline, pharmacological agents like donepezil, a reversible 
cholinesterase inhibitor, have been developed to enhance receptor 
sensitivity, reduce acetylcholine release, or inhibit its hydrolysis [67]
[68]. Promising compounds identified in preclinical studies have 
made synaptic plasticity an attractive target for intervention [65]. 
Research has shown that overexpression of Aβ impairs paired-pulse 
facilitation (PPF), long-term potentiation (LTP), and micro 
excitatory postsynaptic current (mEPSC), thereby offering innovative 
strategies for addressing synaptic dysfunction [69]. Early-stage 
therapies, including anti-Tau antibodies and direct Aβ inhibitors, 
have demonstrated potential in altering biochemical pathways and 
decelerating disease progression [66]. However, challenges related 
to blood-brain barrier permeability and dose sensitivity persist, 
although advancements such as in-silico LTP models suggest possible 
solutions.

Synaptic Dysfunction and Plasticity Targets

According to the cholinergic hypothesis; Cholinergic deficiencies 
are the main reason for impaired synaptic information processing [77]. 
Donepezil, a reversible cholinesterase inhibitor, targets acetylcholine 
release, improve receptor sensitivity, or inhibit acetylcholine 
hydrolysis. Through this, it reduces early-stage AD signs such as 
including mood problems and cognitive loss [78].

 It has been discovered that Aβ when overexpressed inhibits 
paired-pulse facilitation (PPF), long-term potentiation (LTP), and 
micro excitatory postsynaptic current (mEPSC), creating new 
strategies for treating synaptic dysfunction [80]. Anti-Tau antibodies 

Figure 3: Alzheimer’s pathology imaging techniques.
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and direct Aβ inhibitors are examples of early-stage medications that 
have shown promise in modifying biochemical pathways and slowing 
the progression of disease [81]. There are still issues with blood-brain 
barrier permeability and dose sensitivity, but developments like in-
silico LTP models point to possible fixes [82]. The combination of 
RGS4 and mGlu allosteric modulators has demonstrated potential for 
improving cognitive performance, whereas PRC2 inhibitors have been 
created to control pyramidal engram activity and restore phosphatase 
levels [83]. To completely implement these treatment approaches, 
more molecular and pathway target refinement is required [84]. 

Emerging Molecular Targets

Recent investigations have uncovered a wide array of compounds 
that play a role in the pathology of Alzheimer's disease (AD) [85]. 
Some of these compounds are linked to inflammatory conditions that 
are particularly characteristic of AD, potentially acting as surrogate 
markers for the disease's fundamental mechanisms [86]. Through 
various pathways (both direct and indirect), other compounds 
influence tau and Aβ levels [87]. The importance of these molecules 
in the pathogenesis of AD demands a more thorough evaluation, 
because the differing phenotypes of familial AD—arising from 
PSEN1 mutations—alongside the diverse embryonic expression 
patterns of presenilin (PSEN) and its genetic profile, indicate that 
the underlying pathophysiology of familial AD cases might indeed 
be distinct [88]. A continual focus on biogenesis and its neurotoxic 
potential has emerged in the field of AD research; however, a range of 
methodologies aimed at addressing AD is also being developed [89].

An abundance of novel molecular targets has been demonstrated 
to affect the etiology of Alzheimer's Disease (AD); however, the 
precise function of supplementary molecules remains ambiguous 
[90]. Treatments are presently evolving into a new phase of drug 
repositioning (1), which modifies strategies to incorporate the 
reduction of β-amyloid precursor protein (APP) synthesis, the 
minimization of neuroinflammation and the enhancement of the 
neuronal microenvironment—this occurs concurrently with Aβ 
reduction therapy [91]. Future therapeutic targets are anticipated 
to diversify even more, because they will emphasize inflammation 
suppression, microenvironment enhancement and synapse 
protection, marking a considerable shift in the methodology for 
managing AD [92].

Targeting Protein Misfolding and Clearance

Proteinopathy represent a hallmark of neurodegeneration, 
particularly in the context of Alzheimer’s disease, where the 
misfolding and aggregation of proteins can propagate beyond the 
initially affected cells [93]. These processes frequently result in large-
scale deposition of misfolded proteins, which are visible at the tissue 
level [94]. Addressing the root cause of the disease has proven to be 
challenging (due to limitations in both conventional and innovative 
drug approaches), as well as ethical and legal concerns [95]. Using large 
molecules to target protein misfolding and aggregation may, however, 
be counterproductive because of a lack of selectivity for diseased cells 
over healthy ones [96]. Although immunotherapeutic strategies—
including specific-targeting active and passive approaches—remain 
promising, advances such as an anti-Tau vaccine and monoclonal 
antibodies designed for micro-dosing have shown potential [97]. 

Targeting nitrated or peroxidised monomeric Tau, which contributes 
to oligomer formation, has also led to the identification of new drug 
candidates [98]. Future strategies should focus on minimizing cross-
reactivity of therapeutic agents while concentrating on intraneuronal 
proteinopathy proteins [99].

Inhibiting enzymes that are responsible for these (pathological) 
processes could potentially thwart the onset, spread and progression 
of proteinopathy [100]. This includes the seeding of such conditions 
[101]. Promising drug characteristics and innovative approaches 
should, however, continue to be explored and developed, because 
they hold significant potential [102]. Although challenges remain, the 
pursuit of effective solutions is essential [103].

Advancements in Diagnostic Tools
Histopathological verification frequently (and often) overestimates 

the sensitivity and specificity of diagnostic tests; this tendency has led 
numerous researchers to concentrate on cerebrospinal fluid (CSF) 
biomarkers [104]. The biomarkers that have been most extensively 
studied include beta-amyloid 42, total tau and tau phosphorylated 
at threonine 181 (Table 1) [105]. CSF beta-amyloid 42 levels have 
been reported to correlate with brain extracellular beta-amyloid 
plaque levels [106]. However, a dependable individual patient-
based assay to confirm that peripheral blood tests accurately predict 
brain pathology remains underdeveloped [107]. Efforts to identify 
plasma biomarkers have explored several options: beta-amyloid 
42, discloid-1, cerebrospinal and brain-enriched A4 proteins and 
even ventricular enlargement with increasing PL2/PL1 ratios [108]. 
Complement receptor 1 variants, isoforms, protein levels and RhD 
protein concentrations have also been linked to early cognitive 
impairment of unknown origin [109]. Although combining plasma 
biomarkers remains underutilized, current approaches barely tap into 
the wealth of data generated by cognitive assessments and clinical 
evaluations [110].

Various technical challenges have impeded the utilization of 
Alzheimer’s pathology imaging techniques. Some of the techniques 
utilised are positron emission tomography (PET) and single-photon 
emission computed tomography (SPECT), for diagnostic purposes 
[111]. These technologies regardless, have proven to be essential the 
diagnosis of the disease[112]. 

Biomarkers for Early Detection

Alzheimer's disease is a prevailing cause of dementia, underscoring 
the urgent need for extensive research aimed at identifying effective 
biomarkers for diagnosis and treatment. [114] Recent progress in 
neuroimaging, along with the discovery of cerebrospinal fluid (CSF) 
and blood biomarkers, has significantly enhanced the early detection 
of AD with remarkable specificity. [115] Notably, alterations in brain 
MRI can be detected prior to the manifestation of symptoms in AD 
patients; however, mild cognitive impairment (MCI) is acknowledged 
as a precursor to dementia. 

The examination of CSF offers a crucial opportunity for identifying 
prion-related amyloidopathy, as well as a newly recognized condition 
known as primary age-related tauopathy. While CSF-based tests show 
potential, blood-based tests are more convenient to administer and 
have advanced notably, particularly with the development of DNA 
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methylation-based biomarkers. Additionally, a decline in olfactory 
function has been identified as a significant early marker of AD. 
Moreover, biopsy samples from regions such as the skin, eyes, and 
nasal mucosa can provide valuable diagnostic insights for individuals 
at risk of developing AD. This comprehensive review emphasizes the 
importance of current biomarkers for preclinical Alzheimer's disease 
(AD) and explores the potential advancements they may bring to AD 
research.

Nevertheless, the implications of these findings are far-reaching, 
despite the challenges that remain. A deeper understanding of 
biomarkers is crucial, as it could significantly influence future 
therapeutic strategies.

Neuroimaging Techniques

Alzheimer's disease (AD) is marked by the accumulation of 
amyloid plaques and neurofibrillary tangles, accompanied by synaptic 
and neuronal degeneration. To effectively identify individuals with 
AD, it is essential to utilize reliable biomarkers that accurately reflect 
the underlying neuropathology in a non-invasive manner. 

Among the various neuroimaging techniques available, MRI has 
demonstrated particular efficacy. In patients diagnosed with AD, 
notable atrophy is evident in both the hippocampus and entorhinal 
cortex. Consequently, accelerated rates of atrophy are typically 
regarded as necessary criteria for clinical trials related to AD. By 
evaluating atrophy in participants over time, researchers have found 
that the percentage change in medial temporal lobe (MTL) volume 
over a one-year span may provide a significant metric for gathering 
clinical data concerning this specific alteration. Nevertheless, 
additional research is needed to substantiate these findings, as a 
comprehensive understanding of the complexities of AD is vital for 
the development of effective interventions. 

Another approach to identifying the neuropathology associated 
with AD involves employing voxel-based morphometry (VBM) to 
analyze variations in grey matter. A common method is to compare 
differences between groups with AD, mild cognitive impairment 
(MCI), and normal controls. Diffusion tensor imaging (DTI) serves 
as another technique for detecting alterations in white matter. Recent 
studies have documented a marked reduction in AD-related fractional 
anisotropy (FA) in the entorhinal cortex and hippocampal regions. 
Future research utilizing DTI will be necessary to explore this early 
stage further. 

Liquid Biopsy for Alzheimer’s

The progressive dementia known as Alzheimer's disease (AD) is 
characterised by neurofibrillary tangles and amyloid plaques [136]. 
AD is diagnosed using these two characteristics [137]. Researchers 
use tau tracers, amyloid positron emission tomography, and 
cerebrospinal fluid biomarkers to evaluate new medications in clinical 
trials and comprehend the course of AD [138]. The disease progresses 
to further stages as it gets worse [139]. Early detection is therefore 
essential [140]. Especially in the preclinical phases, the development 
of useful liquid biopsies for early AD identification is essential for 
prompt therapy [140]. 

According to recent research, biomarkers such total and 
phosphorylated tau, neurofilament light chain, Aβ1–40, and Aβ1–42 
may offer a viable substitute method for quickly evaluating AD patients 
[141]. Additionally, liquid biopsy can be used to detect and track a 
biomarker's response to treatment and can be developed as a drug-
free method in clinical practice [142]. Analysing blood-based protein, 
RNA, miRNA, and DNA levels can greatly aid in the formulation of 
clinical trials because blood is rich in sensitive information [143]. 
Furthermore, AD patients have a low level of EVs [144]. It should 
be enhanced by customising the immune system for pathology, 

Table 1: Clinical Trials and Drug Development.
Treatment/Drug What It Targets Stage of Testing Current Status How It Helps People

Aducanumab
Amyloid-β plaques in the 
brain

Advanced testing
(Phase 3b/4)

Ongoing studies
Helps slow down memory loss and cognitive decline for 
some patients.

Lecanemab
Amyloid-β plaques in the 
brain

Completed large-scale 
testing
(Phase 3)

Approved by FDA
Shows promise in slowing cognitive decline, offering 
hope for early-stage patients.

Donanemab
Amyloid-β plaques in the 
brain

Completed large-scale 
testing
(Phase 3)

Results available
Demonstrated potential to slow progression in early-
stage Alzheimer's, improving quality of life.

Verubecestat (MK-
8931)

Enzyme involved in amyloid 
production

Advanced testing (Phase 
III)

Stopped due to lack 
of benefit

Initially aimed to reduce amyloid production but did not 
improve cognition; increased adverse effects.

Lanabecestat 
(AZD3293)

Enzyme involved in amyloid 
production

Mid-to-advanced testing 
(Phase II/III)

Stopped due to lack 
of benefit

Did not slow cognitive decline in mild Alzheimer's 
patients, highlighting challenges in targeting amyloid.

Atabecestat
(JNJ-54861911)

Enzyme involved in amyloid 
production

Mid-to-advanced testing 
(Phase II/III)

Stopped due to safety 
concerns

Caused serious liver issues and cognitive problems; 
underscores need for safer treatments.

Galantamine
Brain chemicals that help 
memory

Widely available Commonly prescribed
Helps improve memory and daily functioning by boosting 
acetylcholine levels.

Donepezil
Brain chemicals that help 
memory

Widely available Commonly prescribed
Delays progression of Alzheimer's symptoms, improving 
quality of life.

Rivastigmine
Brain chemicals that help 
memory

Widely available Commonly prescribed
Enhances memory and cognitive functions, supporting 
daily activities.

Memantine
Excess brain chemicals 
that can harm

Widely available Commonly prescribed
Reduces symptoms by protecting brain cells from 
excessive glutamate.

Stem Cell Therapies
Regenerative approaches 
to brain health

Early-to-advanced testing 
(Phase 1–3)

Ongoing research
Explores new ways to repair or replace damaged brain 
cells, offering potential for future treatments.
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staging, early diagnosis, and an accurate survey to evaluate nerve 
activation and function [145]. After that, circulating DNA samples, 
EV components, and miRNA should be examined to determine the 
effectiveness of current pharmacological therapies [146]. 

Clinical Trials and Drug Development
The high number of drug failures in Alzheimer’s disease (AD), 

along with the slow and costly drug development process, has 
led to fewer diverse treatment options and less involvement from 
pharmaceutical companies [147]. But these failures haven’t been for 
nothing—they've provided valuable lessons for researchers and the 
industry [148]. For a long time, most drug pipelines have focused on 
the amyloid-β peptide as a target, but after so many setbacks, there’s 
now a growing appreciation for other approaches, like targeting 
extracellular tau and exploring alternative pathways [149]. Scientists 
are realizing that looking beyond amyloid mechanisms might be the 
key to real progress [150] (Table 2).

As our understanding of AD deepens, it’s becoming clearer that 
the rising levels of Aβ and other protein buildups in aging brains 
might share a common root cause—a problem with the brain’s ability 
to properly clear out these proteins [151]. This could be due to issues 
with the body's natural clearance and degradation systems, or even 
factors like coexisting conditions and epigenetic susceptibilities [152]. 
Data from both animal studies and human brain imaging strongly 
link dysfunctional elimination pathways to the protein deposits seen 
in AD [153]. But there’s still debate—does a reduced ability to clear 
proteins actually cause these buildups, especially at lower levels before 
the disease fully develops [154]. There are still many unanswered 
questions [155]. What’s clear is that deficiencies in these elimination 
pathways leave gaps in our understanding of the early amyloidogenic 
state that drives AD [156]. 

Successes and Failures of Current Drug Candidates

The enormous effort to develop new drugs for Alzheimer’s disease 
(AD) has resulted in a vast and complex collection of clinical trial 
data, covering both symptom-relieving and disease-modifying 
treatments [157]. There have been a few positive trials, mostly using 
anti-amyloid secretase modulators, which supports the idea that the 
earliest detectable changes in neurodegenerative diseases come from 
the faulty processing of proteins [158]. However, many other types 
of drugs have been tested, and most have failed to show benefits 
[159]. Despite these setbacks, the number of potential drug targets 
for AD continues to grow [160]. Researchers are now also looking 
at broader, systems-level treatments that could be useful across 
different neurological diseases [161]. The few successful trials have 
been extremely valuable in guiding research, reinforcing the focus on 
Aβ as a target [162]. At the same time, many other drug candidates 
that previously failed are being revisited, now with stronger scientific 
foundations [163]. The lessons learned from clinical trials are crucial 
when planning future dementia treatments [164]. But there’s a real 
challenge—repeated failures have discouraged some funding bodies 
and investors [165]. This makes it harder for new drug candidates 
to progress, especially when compared to other central nervous 
system (CNS) diseases like diabetes, inflammation, and pain, where 
drugs that initially failed in AD later found success in treating other 
neurological conditions [166].

Key Challenges in Drug Development for Alzheimer’s

A total of 14 drugs have been approved for Alzheimer’s disease 
treatment, but none of them can modify the disease process or 
provide a cure [167]. This is because several challenges make drug 
development difficult [168]. Here, we look at three major obstacles. 

Table 2: Alzheimer’s Disease Treatment Approach.

Treatment What It Does Potential Benefits What's Happening Now Why It Matters to 
Families

Gene Therapy

Uses viruses (AAV vectors) to 
deliver beneficial genes into 
brain cells, targeting areas like 
the neocortex and hippocampus 
affected by Alzheimer's. Can 
potentially replace harmful genes 
(like APOE4) with protective ones 
(like APOE3).

Could potentially regenerate 
damaged brain cells, slow down or 
reverse the genetic risk factors of 
Alzheimer's, and improve neuron 
function in affected brain regions.

Researchers are developing AAV vectors 
to target specific brain regions and 
deliver genes that stimulate neuronal 
regeneration or enable gene replacement 
therapy. Family members of the lacZ 
gene are used as reporter genes, and 
fluorescent genes are attached to AAVs to 
track protein production.

Offers hope for a future 
where genetic risks can 
be mitigated or even 
reversed, potentially 
preventing or slowing 
down the progression of 
Alzheimer's.

Immunotherapy 
(Vaccines & 
Antibodies)

Aims to clear amyloid plaques 
by stimulating the body's 
own immune system (active 
immunotherapy) or directly 
administering antibodies (passive 
immunotherapy). Targets Aβ 
deposits in the brain.

May reduce amyloid buildup, lower 
Aβ neuritic plaque load and soluble 
aggregated Aβ, and improve 
cognitive function. Animal studies 
show reductions without severe 
inflammation or harmful cognitive 
effects.

Clinical trials are underway in humans 
to test both active and passive 
immunotherapy that targets Aβ. 
Short amino acid antigens are being 
used to reduce the risk of cerebral 
microhaemorrhages.

Could lead to effective 
vaccines or antibody-
based treatments 
that prevent or treat 
Alzheimer's by clearing 
amyloid plaques from the 
brain.

Personalized 
Medicine & 
Precision 
Health

Tailors’ treatments based on 
individual genetic factors, 
environment, personality, and 
daily habits. Aims to predict and 
prevent diseases by considering 
unique individual characteristics.

Could lead to more accurate and 
earlier diagnoses, guide the design 
of innovative biomarker-based trials, 
improve the monitoring of treatment 
effects, and ultimately develop 
multidisciplinary, personalized, 
and preventive treatments and 
interventions.

Focus is on identifying genetic, protein, 
neuroanatomical, and other markers 
in the preclinical stage of Alzheimer's. 
Combinational trials should be designed 
specifically for elderly individuals who 
show resistance to certain inhibitors and 
antibodies.

Offers the potential 
for treatments that are 
specifically tailored to 
each individual, taking 
into account their unique 
circumstances and 
genetic makeup.

Regenerative 
Medicine & 
Stem Cell 
Therapy

Uses stem cells or young plasma 
from donors without genetic 
risk factors to repair or replace 
damaged brain cells and enhance 
neurogenesis (the formation of 
new neurons).

May promote the growth of new 
neurons, enhance neurogenesis, 
potentially reverse cognitive deficits 
associated with Alzheimer's, and 
rejuvenate the aging brain.

Researchers are exploring regenerative 
approaches to enhance neurogenesis 
and using young plasma from donors 
without genetic risk factors for 
Alzheimer's, which may have rejuvenating 
effects on the aging brain.

Offers a potential avenue 
for repairing brain damage 
caused by Alzheimer's, 
potentially restoring 
cognitive function and 
improving quality of life
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First, for a drug to be effective, it needs to reach the site where 
plaques and neurofibrillary tangles form in the brain [169]. But 
the brain has a blood-brain barrier, which can make it difficult 
for therapeutic drugs to pass through and reach their target [170]. 
Second, many Aβ immunotherapies have been developed to reduce 
Aβ peptide expression [171]. However, a phase 3 trial of passive Aβ 
immunotherapy had to be discontinued because most participants 
developed amyloid-related imaging abnormalities [172]. On the other 
hand, multiple active Aβ immunotherapies have been tested, and so 
far, no clinical trial has reported this as a major adverse reaction [173]. 
Third, drugs designed to suppress tau protein tend to have long-term 
effects, requiring careful dosing and prolonged administration [174]. 
The best time for treatment is believed to be during the early stages of 
mild cognitive impairment, but this is still debated [175].

The long and silent phase of drug development extends the time 
it takes for a treatment to reach the market [176]. This, combined 
with the complex regulations surrounding dementia treatments, 
makes the process both difficult and time-consuming [177]. When it 
comes to the amyloid hypothesis, many clinical trials have reported 
negative results, even though drug development has closely followed 
pharmacokinetic and pharmacodynamic principles [178]. This has 
been discouraging for some researchers, but it also signals a shift 
in the approach to amyloid clinical trials [179]. To overcome this 
impasse, changes are being made to clinical trial strategies [180]. 
These include adjusting research populations and incorporating 
additional dementia diagnostics [181]. Some of these diagnostics 
use molecules directly linked to neurodegenerative disorders, while 
others rely on data about synaptic failure from cytoplasmic proteins 
or commercially available markers to better study drug effects [182].

Innovative Trial Designs and Adaptive Methodologies

The traditional randomized controlled clinical trial remains the 
gold standard for evaluating Alzheimer’s disease treatments [183]. 
However, running these trials under current regulatory guidelines is 
extremely costly [184]. To make them viable for investors and other 
stakeholders, phase III trials must be large in size and scope [185]. 
These large trials typically focus on patients in the later stages of the 
disease, often in the mild to moderate dementia phase [186]. To ensure 
the presence of amyloid pathology, researchers use amyloid PET scans 
or CSF Aβ42 testing to select participants [187]. The problem is that 
by the time the disease has progressed enough for enrolment, it may 
already be too late for a treatment to make a meaningful difference 
due to the extensive damage that has occurred [188]. So far, more than 
99% of anti-amyloid treatment trials have failed to show any significant 
cognitive benefits, with failure rates exceeding 99% in advanced-stage 
trials [189]. In the case of beta-secretase inhibitors, phase III studies 
even showed an increase in the rate of cognitive decline [190]. These 
failures highlight a crucial lesson—patients must be enrolled at a 
stage where they can truly benefit from the treatment’s mechanism of 
action [191]. This is essential not only for scientific success but also for 
securing regulatory approval [192]. 

Concepts such as the assertion that 'the sole factor of significance 
in a clinical trial is the patient' contribute minimally to accelerating 
the process of innovative drug discovery. The primary challenge for 
a competent research team lies in the meticulous selection of well-
defined, homogeneous molecular populations and the identification 

of appropriate patients—those who are most likely to experience 
substantial treatment benefits. In therapeutic domains where 
advancements are sluggish, the implications can be dire. Even in 
the absence of disease-modifying therapies that directly address the 
underlying causes of Alzheimer’s, the progression of drug development 
must persist. This underscores the critical necessity to investigate and 
enhance innovative trial designs. Such methodologies can establish 
new operational guidelines for patient selection and testing criteria, 
thereby increasing the efficiency of trials. Adaptive clinical trial 
designs, which permit researchers to adjust various elements of the 
study without jeopardizing its scientific validity, represent another 
essential strategy. By adopting these novel approaches, research can 
continue to advance, bringing us closer to more effective therapeutic 
options.

Future Prospects in Alzheimer’s Disease 
Treatment

Despite the extensive number of clinical trials conducted, only five 
drugs are currently available for the treatment of Alzheimer's disease. 
Nevertheless, numerous potential therapies are under development. 
Among those that reach phase 3 clinical trials, the predominant 
mechanism of action is amylase inhibition, followed closely by 
acetylcholinesterase inhibition. However, due to the high attrition 
rate of drugs failing to progress beyond phase 2 trials, typically only 
three or fewer agents successfully transition from phase 2 to the final 
trial phase. While there is optimism regarding future treatments, 
significant challenges persist, including the need to accurately identify 
suitable candidates for medication and the necessity of establishing 
reliable predictive markers. To enhance the likelihood of successfully 
completing phase 3 clinical trials, it is imperative to consistently 
conduct long-term, effective phase 2 studies in conjunction with 
standard phase 3 trials. These studies must also navigate a complex 
bureaucratic landscape, which involves coordination with regulatory 
bodies and organizations, underscoring the importance of early 
preparation. For these trials to advance efficiently, collaboration 
between researchers and participants is essential, leveraging 
innovative programs that facilitate multicenter and large-scale studies 
to be completed more rapidly. This strategy could garner interest from 
various companies with aligned research objectives, thereby assisting 
in covering costs associated with organizational and study support.

Gene Therapy Approaches

The primary genetic risk factor associated with sporadic 
Alzheimer’s disease is the APOE4 allele, succeeded by more recently 
discovered genes such as ABCA7, BIN1, CD2AP, CD33, CR1, 
EPHA1, MS4A, and PICALM. This condition predominantly impacts 
the neocortex as individuals age, resulting in significant neuronal 
dysfunction in the hippocampus and other brain regions. Regrettably, 
there is currently no established method for regenerating neurons 
in the affected areas. Existing treatments have primarily focused 
on symptom management through the use of acetylcholinesterase 
inhibitors and glutamatergic receptor modulators, achieving only 
limited efficacy. In recent years, adeno-associated viruses (AAVs) 
have gained prominence in gene therapy investigations. These viruses 
possess the capability to transport genes, small promoters, receptors, 
or RNA sequences. Researchers have engineered various AAV vectors 
with distinct serotypes and capsids, enabling targeted delivery to 
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cortical cells, the hippocampus, or other compromised brain areas. 
By employing a mini-promoter with an excision sequence flanked 
by loxP sites, these vectors can effectively introduce genes that code 
for specific proteins. To verify the efficacy of the therapy, scientists 
have utilized family members of the lacZ gene as reporter genes. 
Additionally, fluorescent genes have been incorporated into AAVs, 
facilitating the monitoring of protein expression via fluorescent 
microscopy. Looking forward, these AAV vectors hold promise for 
mitigating the impacts of Alzheimer’s disease by promoting neuronal 
regeneration or facilitating gene replacement therapies, such as 
substituting apoE4 with apoE3 in individuals who possess the apoE4 
variant.

Immunotherapy (Vaccines and Antibody-Based 
Treatments)

The removal of Aβ deposits has been demonstrated to alleviate 
the pathological manifestations of Alzheimer’s disease (AD) in 
preclinical animal research. Currently, numerous clinical trials are 
being conducted to evaluate both active and passive immunotherapies 
aimed at targeting Aβ. In animal models of AD, both forms of 
immunotherapy have proven effective in diminishing amyloid 
accumulation. Specifically, they have been shown to significantly 
reduce the load of Aβ neuritic plaques and soluble aggregated Aβ. 
Notably, these reductions have been achieved without inducing 
severe inflammation in the central nervous system (CNS), without 
markedly decreasing the levels of full-length amyloid precursor 
protein (APP) or its C-terminal fragments, and without resulting in 
detrimental cognitive effects. Passive anti-Aβ immunotherapy has 
been particularly effective in rapidly clearing amyloid and neuritic 
plaques, both in transgenic APP-expressing mice and in TgCRND8 
mice following stereotaxic injection. These encouraging findings 
from animal studies have significantly propelled the pursuit of 
immunotherapy as a potential strategy for the prevention or even 
treatment of AD.

Multiple research teams have evaluated the safety and efficacy 
of anti-human Aβ immunization in human subjects. Initial studies 
focused on the passive immunization of Alzheimer’s disease (AD) sera 
in vitro against postmortem brain tissue affected by the condition. 
Active vaccination functions by activating the recipient's immune 
system to generate a response against the designated antigen. 

Conversely, passive immunization entails the direct administration 
of antibodies sourced externally, which attach to a specific antigen or 
epitope associated with the disease. Unlike active vaccination, passive 
immunization lacks antigen specificity and does not initiate primary 
T- or B-cell immune responses. Research conducted in mouse models 
of AD, along with preliminary clinical trial findings, indicates that 
vaccine therapy may effectively and swiftly eliminate amyloid plaques 
from the brain. 

Concerns regarding cerebral microhaemorrhages in humans, 
previously associated with the use of full-length amino acid antigens, 
have been alleviated through the application of shorter amino acid 
antigens. Currently, researchers are diligently investigating whether 
this promising strategy can genuinely provide advantages for AD 
patients.

Personalized Medicine and Precision Health

The advancement of medicine is increasingly centered on tailored 
therapies that consider individual variances, alongside precision health 
initiatives aimed at forecasting and averting diseases. Alzheimer's 
disease exemplifies a multifaceted disorder shaped by an interplay of 
genetic predispositions, environmental influences, personality traits, 
and lifestyle choices. Approximately 25% of patients exhibit mixed 
pathology, complicating diagnosis, restricting treatment to only those 
causes that are curable, and hindering the approval of novel therapies 
under existing regulations. To tackle these issues, it is essential to design 
combinational trials specifically for older adults who, due to natural, 
sporadic, or experimental factors, demonstrate resistance to certain 
inhibitors and antibodies. The inclusion of orphan or less-researched 
populations in these trials may introduce additional complexities, 
further complicating the process. This paper aims to outline the 
primary scientific obstacles at the convergence of contemporary and 
innovative research with its clinical applications. We concentrate on 
the genetic, proteomic, neuroanatomical, and other markers associated 
with the preclinical phase of Alzheimer's disease, as examined within 
these research domains. Furthermore, we highlight the advantages of 
integrating and enhancing communication across these fields of study, 
which encompasses achieving more precise and timely diagnoses, 
informing the design of innovative biomarker-driven trials, refining 
the assessment of treatment outcomes, and ultimately fostering the 
development of multidisciplinary, personalized, and preventive 
strategies for Alzheimer's disease in the future.

Regenerative Medicine and Stem Cell Therapy

Regenerative medicine, particularly through stem cell therapy, 
presents promising opportunities for the comprehension and potential 
treatment of Alzheimer's disease. This intricate condition, marked 
by the buildup of amyloid-beta plaques and tau tangles, currently 
lacks effective therapies capable of modifying its progression. 
Researchers are investigating regenerative strategies to stimulate 
neurogenesis, the process of generating new neurons, which may aid 
in the restoration of impaired neural circuits. Stem cell therapies are 
designed to encourage the development of new neurons, potentially 
reversing cognitive impairments linked to Alzheimer's. Furthermore, 
research is examining the application of young plasma from donors 
devoid of genetic predispositions to Alzheimer's, which might exert 
rejuvenating effects on the aging brain. Although these approaches 
remain in preliminary phases, they signify groundbreaking methods 
to address a disease that impacts millions globally.

Challenges and Barriers in Alzheimer’s 
Research

The primary obstacle in the advancement of therapies for 
Alzheimer’s disease lies in the insufficient comprehension of the 
detrimental cycle that perpetuates the condition. To advance, it is 
imperative to create and implement an ultrasensitive diagnostic 
framework. Early detection of disease-related alterations with 
quantitative accuracy is crucial. Although clinical dementia 
manifests only after considerable neuronal damage has occurred, 
the degeneration of neurons and synapses is generally confirmed 
only postmortem. A diagnostic system that integrates and evaluates 
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symptoms, cognitive function, and social behavior following the 
onset of the disease is also necessary. The development of instruments 
to address these deficiencies remains a significant challenge for the 
future. Surmounting these hurdles necessitates collaboration among 
academic institutions, industry stakeholders, and governmental 
bodies. Currently, the industry, particularly in collaboration with 
academia, is engaged in numerous preclinical trials utilizing 
disease models, alongside clinical investigations into potential 
therapies. However, much of the knowledge we acquire originates 
from direct observations made in clinical environments and with 
patients. Fostering collaboration between academia and industry is 
anticipated to facilitate substantial advancements. Concurrently, both 
fundamental and clinical research initiatives have yet to achieve the 
requisite scale. A deficiency in effective regional and international 
partnerships has impeded the progress of collaborative research 
endeavors. Enhancing these collaborations will expedite research 
advancements and yield significant breakthroughs in the treatment 
of Alzheimer’s disease.

Complexity of Alzheimer’s Pathology

Alzheimer’s disease (AD) is the most common cause of dementia 
and a leading contributor to mortality and morbidity [265]. It is 
marked by the buildup of amyloid-beta plaques and neurofibrillary 
tangles made of hyperphosphorylated tau in the brain [266]. Over 
time, these changes lead to the gradual degeneration of cholinergic 
neurons, which play a key role in memory and learning [267]. As 
these neurons deteriorate, there is a decline in the strength and 
duration of extracellular acetylcholine spikes, which are essential for 
transmitting signals between synapses [268]. This happens despite 
the ongoing loss of cholinergic neurons and the drop in extracellular 
acetylcholine levels [269]. As a result, gamma oscillations, which are 
important for cognitive function, weaken, giving way to slower brain 
wave activity [270].

Regulatory and Ethical Considerations

Rapid technological advancements in every field have accelerated 
scientific development at an astonishing pace [271]. In medical science, 
particularly in biotechnology, progress has pushed into areas that 
raise complex ethical and moral questions [272]. As new possibilities 
emerge, there is a growing need to balance what is scientifically 
feasible with what should be pursued in line with humanitarian 
concerns [273]. To address potential bioethical challenges, various 
organizations have established guidelines with general principles and 
recommendations that healthcare researchers must consider [274]. 
Scientific research and technological development also require proper 
and timely regulation [275]. However, with biotechnology evolving 
so quickly, the industry’s infrastructure has become too complex 
for easy oversight [276]. The commercialization of new products 
is advancing just as fast as the technology itself [277]. Regulatory 
agencies and collaborative data-sharing efforts have helped streamline 
some processes, such as the approval of new vaccines and ensuring 
the ethical supply of drugs [278]. Still, there is more work to be 
done [279]. Addressing ethical and regulatory issues in personalized 
medicine is crucial for shaping the future of biotechnology [280]. A 
strong ethical framework will guide future developments, improve 
regulatory protections, and promote collaboration to ensure access to 
better treatments, improve human health, and prevent diseases [281]. 

Additionally, planning and implementing prevention programs, along 
with educating future professionals, will play an essential role in this 
evolving landscape [282].

Financial and Societal Impacts on Research

The global cost of Alzheimer’s disease was estimated at $604 
billion in 2010 [283]. In some countries, this expense exceeds 1% of 
their gross domestic product (GDP) [284]. Japan, for example, already 
spends 1% of its GDP on Alzheimer’s care, with 4 million people 
over the age of 65 affected [285]. In the next decade, this number is 
expected to rise to 7.3 million [286]. Both developed and developing 
countries are expected to see a significant increase in Alzheimer’s cases 
in the future [287]. Advancements in medical therapy will help reduce 
the social, healthcare, and economic burden of the disease [288]. As 
the population continues to age, these advancements will also have 
economic benefits [289]. Since 2013, GDP has been used to measure 
the purchasing power of an economy, reflecting a country’s economic 
activity [290]. Because healthcare is a part of GDP, the development 
of a drug that improves dementia outcomes would also benefit the 
healthcare industry as a whole [291].

While advancements in Alzheimer’s treatment can drive economic 
growth, they also require significant research investment [292]. If 
the condition continues to be classified somewhere between severe 
mental disorders and aging-related diseases, policy measures may 
fall short, reducing their effectiveness and leading to social instability 
and gaps in healthcare intervention [293]. However, the successful 
implementation of new therapies can positively impact policy and 
healthcare responses [294]. Developing effective treatments creates 
a win-win situation [295]. When medical advancements lead to cost 
reductions in welfare policies, governments benefit, for example, 
through lower tax burdens [296]. In Japan, where demand for such 
treatments is high, similar economic benefits extend to interest-
bearing defined-benefit pensions [297]. To maintain efficient pension 
fund management, a growing number of contributing individuals is 
essential [298]. The development and approval of dementia drugs 
play a crucial role in extending the healthy years of these individuals, 
ultimately supporting the sustainability of pension systems [299].

Conclusion
Alzheimer's disease presents a significant challenge, affecting not 

only individuals but also families and communities globally. Although 
existing treatments provide some alleviation of symptoms, they 
do not prevent the progression of the disease. Our comprehension 
of Alzheimer's is continually advancing, shifting from a narrow 
focus on amyloid plaques to a more comprehensive perspective 
that encompasses inflammation, synaptic dysfunction, and various 
other molecular factors. This enhanced understanding is vital for the 
development of effective therapies. The quest for a cure is ongoing, with 
researchers investigating numerous pathways, including the targeting 
of beta-amyloid and tau proteins, addressing neuroinflammation, and 
restoring synaptic function. Recent studies also emphasize the promise 
of novel molecular targets and innovative drug delivery systems, 
such as nasal insulin sprays. Despite many potential treatments 
encountering obstacles in clinical trials, these challenges stimulate 
further research and refinement of therapeutic strategies. Ultimately, 
addressing Alzheimer's necessitates a multifaceted strategy: early 
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detection, holistic patient care, and the continuous advancement 
of new treatments. By integrating our expanding knowledge of the 
disease with innovative research and a compassionate approach to 
patient care, we can aspire to a future where Alzheimer's exerts a 
diminished impact.
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