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Abstract

Like infectious disease vaccines, effective Alzheimer’s disease vaccines 
should elicit an antibody response similar to the natural autoantibodies found 
in serum and preparations of intravenous immunoglobulins, which recognize 
an array of amyloid-β conformations. An immune response that is the result 
of a progressive formation over time of antibodies against toxic amyloid-β 
conformations and that different from most vaccines under development, would 
require the whole protein as an antigen, including both B and T-cell epitopes. 
However, due to the presence of amyloid-β T-cell epitopes and the fact that such a 
protein is a Th1 immune modulator, safe and effective vaccines, besides eliciting 
Th2 immunity, should inhibit but not abolish Th1 immunity, which is needed for 
protection against pathogens; a strategy that would apply to other potential 
Alzheimer’s disease vaccine antigens, e.g. tau. Due to immunosenescence, 
these vaccines would be more effective for preventive rather than therapeutic 
purposes, as younger individuals produce a better immune response. Recently 
developed novel adjuvants that most probably act at the dendritic cell level and 
that can deliver such a selective Th2 immune modulation while inhibiting Th1 
immunity, would be crucial for the development of these proposed vaccines.  
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protein, where the whole protein or some of its peptides with Th1 
adjuvants may trigger a damaging inflammatory response [16,17].  
Hence, there is a need to reassess the current AD vaccine paradigm 
and consider new approaches to its development. 

Different from infectious disease vaccines where the number 
of Th1 adjuvants is large, vaccines against neurodegenerative 
proteinopathies, like AD, have a negligible selection of adjuvants 
that stimulate solely Th2 immunity, alum being the most common 
[18]. Still, that alum does not elicit an effective immunity in the 
elderly, as shown by the age-associated decrease in the efficacy of 
the flu and other vaccines [19] and have cumulative neurotoxicity 
[20], would preclude its use in AD vaccines. That certain bacterial 
toxins are “conditional” Th2 adjuvants, i.e. the stimulated immunity 
would depend on the age and mode of administration among other 
factors, adds an element of risk when used in large populations; for 
example, cholera toxin elicits Th2 immunity in young animals, but 
induces Th1 immunity in older ones [21], as well as a Th17 immune 
response [22]. The recent reports that some well-defined helminth 
glycans and plant-derived glycosides elicit Th2-only immunity 
[18,23], despite the absence or presence of T-cell epitopes, offer a 
new approach to develop safe and effective AD vaccines.  Access to 
adjuvants that stimulate Th2 but inhibit Th1 immunity would allow 
the use of whole proteins, e.g. Aβ42 and tau; antigens that are not used 
because of the damaging inflammatory immune response caused by 
their T-cell epitopes. Significantly, since Aβ42 has an intrinsic Th1 
immune modulatory activity [24,25], the use of adjuvants that inhibit 
Th1 immunity will be essential with this antigen.   

Abbreviations
AD: Alzheimer’s disease; Aβ: Amyloid-β; Aβ42: Whole Aβ; 

DC: Dendritic Cell; Nabs: Natural Antibodies; IVIG: Pooled 
Immunoglobulins; mAb: Monoclonal Antibodies

Introduction
Due to the high prevalence of Alzheimer’s disease (AD), 5.2 

million cases in the US alone, which is expected to triple by the year 
2050 to 16 million, it is apparent that an active immunization or 
vaccination to prevent and/or treat this disease would be the most 
effective way to manage it. Significant evidence supports the role of 
circulating antibodies against amyloid-β (Aβ) in preventing and/or 
reducing toxic extracellular Aβ oligomers, the main cause of AD [1-3]. 
Indeed, Schenk et al. showed that vaccination of a transgenic mouse 
model for AD with whole Aβ (Aβ42) and the Th1 adjuvant QS-21, 
prevented plaque formation and attenuated behavioral deficits [4,5]. 
However, clinical studies with a similar vaccine, AN-1792, resulted 
in serious side effects and some deaths, caused by a damaging Th1 
inflammatory immune response elicited by the Aβ42’s T-cell epitopes 
plus QS-21 [6,7]. Hence, to prevent a harmful Th1 immunity, later AD 
vaccines contained truncated Aβ antigens without T-cell epitopes, 
usually combined with Th1 adjuvants, a strategy that has yielded 
disappointing results in clinical studies (http://www.clinicaltrials.gov) 
[8-11]. While it was assumed that truncated Aβ with Th1 adjuvants 
elicits a safe immune response, these adjuvants induce a systemic 
Th1 immune response that could affect microglia, magnifying the 
neuroinflammation linked to AD [12-15]. This situation may also 
occur also with other likely antigens for AD vaccines, as with the tau 
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Truncated Aβ antigens lacking T-cell epitopes and representing 
25 to 36% of the whole protein [8-11], i.e. the B cell epitopes within 
the first 15 amino acids, while safer do not allow i) the formation of 
conformational epitopes [26-29] and production of antibodies against 
those epitopes that may be important for Aβ42 disaggregation, and ii) 
the potential cooperativity between antibodies recognizing different 
epitopes [30]. Indeed, the epitopes targeted by most natural anti-
Aβ antibodies (Nabs) include the T-cell epitopes’ sequences [31,32], 
which for safety are absent in truncated Aβ [1-3]. This diversity of 
epitopes support the fact that Aβ42 is not a “static” structure, but a 
dynamic one with conformations and oligomerization states that 
change with time and progression of the disease, a condition that is 
shown by the presence of Nabs targeting diverse Aβ42 conformations 
[27,33,34]. Hence, it is improbable that truncated Aβ would deliver 
the broad selection of Nabs elicited by the polymorphic Aβ42, 
some of which may play a role in the elimination of this protein’s 
toxic forms. Although, the evidence implies that various Nabs are 
conformation-dependent and sequence-independent [26-29,35,36], 
it is obvious that the Aβ42 primary structure, including T and B-cell 
epitopes, is driving this protein’s folding and oligomerization, leading 
to formation of the conformational epitopes needed to stimulate 
production of conformation-dependent Nabs . An advantage of Nabs 
is that they can recognize “toxic” conformations of other proteins 
capable of forming amyloids [35,36]. However, that the conformation 
dependent antibodies induced by aggregated Aβ42 apparently bind 
better to amyloids from this protein than other proteins, upholds the 
use of this protein as a vaccine antigen [35]; an observation that can 
be extended to other proteins forming amyloids. Yet, the stimulation 
of Nabs production cannot be attained with Th1 adjuvants without 
generating damaging pro-inflammatory responses, notwithstanding 
that Aβ42 alone seems to be an effective Th1 immunity inducer 
[24,25,37,38]; hindrances that can be prevented by using adjuvants 
that solely stimulate Th2 while inhibiting Th1 immunity [18,23]. 

Although clinical evaluations of passive immunotherapy with 
pooled immunoglobulins from healthy donors (IVIG) containing 
various Nabs have not met the studies’ primary outcome objectives, 
pre-clinical and clinical studies have shown some immune 
modulatory properties relevant to the treatment of neurodegenerative 
disorders [39-42]. Indeed, it has been shown that previous treatment 
with IVIG reduces the risk of AD by 42% [43]. While polyclonal 
IVIG preparations meet some standardization requirements due to 
the heterogeneity of their source and processing, they differ in their 
distribution of antibody’s isotypes, and their binding to different 
regions of Aβ42 and tau [44-47]. For example, IgM antibodies that 
catalyze the degradation of Aβ42 and presumably tau, preventing their 
aggregation and toxicity, are inactivated during IVIG preparation; 
a situation that results in preparations containing different levels 
of specific antibodies [45,48-50]. Screening of IVIG preparations 
has shown that Nabs target the Aβ42 region between residues 28-
40 where the T cell epitopes are located, as well as pathogenic 
conformation; but poorly recognize the N-terminal  fragment, which 
is the basis for most of the AD vaccines under development [31,32]. 
Yet, immunization with Aβ42 in the AN-1792 vaccine study mainly 
yielded antibodies against the N-terminal region [8,51]; however, 
the damaging pro-inflammatory response induced by this vaccine 
[6] and the increase in Th1 cytokines in mice immunized with Aβ42 

without an adjuvant [24,25], indicate that the Aβ28-40 peptide region 
has an intrinsic Th1 immune modulatory activity. In effect it has been 
shown that Dendritic Cells (DCs) generated in vitro in the presence of 
Aβ42 show an increase in the production of inflammatory molecules 
[52], which would aggravate AD. Thus, because of the likelihood 
that the Aβ regions containing T cell epitopes would induce Th1 
inflammatory responses, even without adjuvants, the use of Aβ42 
as an antigen would require vaccine formulations that prevent Th1 
immunity while stimulating antibodies’ production.  

The fact that Nabs target various Aβ42 epitopes suggests 
cooperative effects between different antibodies, where binding of a 
Nab causes Aβ42 conformational changes that allow binding of other 
antibodies [30], a process that may facilitate the disaggregation and 
degradation of the protein, which may also be extended to antigens 
like tau. The fact that two anti-Aβ monoclonal antibodies (mAbs), 
solanezumab that binds to the central region, and crenezumab a 
conformational antibody, failed to recognize Aβ in human brain 
tissue, has been explained as result of the mAbs’ lack of specificity 
[53].  Another explanation may be that some mAbs require other 
antibodies to exert their action via cooperative effects. Nevertheless, 
IVIG studies strengthen the notion that the production of an effective, 
protective array of Nabs requires Aβ42 rather than its fragments, to 
obtain antibodies against both linear and conformational epitopes, 
including catalytic antibodies [54]. While linear epitopes can be 
readily available by using Aβ fragments [55,56], the fact that the 
delivery of conformational epitopes that include T cell epitopes are 
apparently necessary for a “protective” immunity, is more challenging 
due to the myriad of Aβ42 non-covalently bound aggregates that can be 
reorganized depending on various factors. Even so, there are several 
Aβ constructs apparently with the desired conformations needed to 
develop effective vaccines [55-58] that can be readily synthesized. 
Another approach could be the use of DNA vaccines encoding for 
Aβ42; however, attaining an effective immune response would require 
a prime boost of Aβ42 with Quil A, a strong Th1 adjuvant [38]. Of 
interest is that wild-type mice immunized six times with human 
Aβ42 plus 20 µg of Quil A, did not develop neuroinflammation [59], 
results that contrast with those of the human AN-1792 vaccine 
having 50 µg of QS-21[6,7,60], a significantly less toxic compound 
than Quil A with a mouse acute toxic dose of over 250 µg [61]. While 
the difference between the immune responses in humans and mice 
cannot be explained by differences between the Aβs that are very 
similar, these results stress the need to avoid adjuvants that elicit even 
a poor Th1 immunity. However, regardless of the antigen’s source, an 
effective AD vaccine should induce a broad immune response, which 
is analogous or better than that found in IVIG, which means eliciting 
antibodies targeting a variety of components from the Aβ cascade.

Similar to immunity against pathogens, the various anti-Aβ Nabs 
found in IVIG indicate previous exposure of the immune system 
to a broad variety of antigens. Thus, a successful AD vaccine would 
probably have an assortment of antigens, which besides Aβ-derived 
antigens may include tau as evidently there is synergism between this 
protein and Aβ in AD development [62-66]. Yet, the vaccine must 
elicit only Th2 without residual Th1 immunity; a difficult endeavor 
when considering the intrinsic Aβ42 Th1 immune modulatory activity 
and limited access to Th2 adjuvants that inhibits Th1 immunity. Since 
AD shows a constant progression, its prevention/treatment could 
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require regular immunizations for the rest of the patient’s life in order 
to sustain an effective level of protective antibodies against a diversity 
of antigens; a complex situation because of immunosenescence that 
affects the elderly population and increases inflammation [67]. An 
important observation for AD sub-unit vaccines is that prolonged 
immunization of aged dogs with Aβ42 resulted in a drift of the 
antibody response from the linear epitopes of the amino terminus 
toward conformational epitopes [68]; an observation that may also 
be relevant to long-term immunization with Aβ42 DNA vaccines 
[38].  This finding shows that regular vaccination with Aβ42, probably 
for the rest of a patient’s life, could stimulate the production of 
presumably protective antibodies that recognize new Aβ42 abnormal 
conformations; an approach that in preventive AD vaccines could 
avoid or limit the need for a large number of Aβ42 isoforms in the 
vaccine formulation. 

From the available information it is possible to assume that to 
obtain an immune response similar to that from IVIG, an effective 
AD vaccine must have Aβ42 and perhaps other relevant antigens, 
like tau, to stimulate the production of a broad array of protective 
antibodies. While a diverse antibody response may be attained by 
a prolonged vaccination schedule with Aβ42 and/or a combination 
of Aβ antigens, a most likely situation with an AD vaccine would 
be the stimulation of only Th2 with the concomitant inhibition of 
Th1 immunity. This would be a prerequisite for the safe induction 
of humoral immunity without damaging inflammatory responses. 
Furthermore, because of the ageing recipient population, the vaccine 
should be able to ameliorate to some degree the immune system’s 
decline, a result of immune senescence, in order to stimulate an 
effective immune response [18]. Consequently, it is evident that 
vaccines would be more effective to prevent than to treat AD, starting 
immunization when the immune system is still competent. To attain 
these objectives, the development of these vaccines would need, in 
addition to the antigens, unique immune modulators that would be 
different from those used in the infectious disease vaccines. 
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