Review Article

Cardiovascular Risk Management Recommendations for Patients with Chronic Myeloid Leukaemia who are Candidates for Ponatinib: Multidisciplinary Delphi Analysis

1Haematology and Haematotherapy Department, La Princesa University Hospital, Madrid, Spain
2Head of Cardiology Department, Ramón y Cajal University Hospital, Madrid, Spain
3Haematology and Haematotherapy Department and Coordinator of the Vascular Medicine Area, University of Navarra Clinic, Pamplona, Spain
4Haematology Department of the Clinical University Hospital of Valencia, Spain
5Haematology and Haematotherapy Department of the Virgen de la Arrixaca Clinical University Hospital, Murcia, Spain
6Haematology and Haematotherapy Department of the Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
7Haematology Department of the Clinical University Hospital of Salamanca, Spain
8Angiology and Vascular Surgery Department of the University Hospital of Getafe, Spain
9Internal Medicine Department of the Virgen de las Nieves University Hospital, Granada, Spain
10Cardiology Department, Ramón y Cajal University Hospital, Madrid, Spain
11Clinical Haematology Department of the Clinical Hospital, IDIBAPS, Barcelona, Spain
12Hospital Pharmacy Department of the University Hospital Complex of A Coruña, Spain
13Cardiology Department at La Paz University Hospital, IdiPAZ, CIBER CV, Madrid, Spain

*Corresponding author: López-Fernández T, Cardiology Department, La Paz University Hospital, IdiPAZ, CIBER CV, Paseo de la Castellana 261, 28046, Madrid, Spain

Received: April 14, 2021; Accepted: May 20, 2021; Published: May 27, 2021

Abstract

Progress in the treatment of Chronic Myeloid Leukaemia (CML) has significantly improved the survival rates and prognosis of these patients. As a result, there is a growing awareness of the adverse effects that the treatments used can have on the Cardiovascular (CV) system. A high percentage of patients develop sequential resistance to CML treatments and, in these cases, ponatinib represents a good therapeutic option that has been associated with cardiovascular events. This required the development of recommendations for its management.

A Delphi analysis conducted by a multidisciplinary panel of experts developed and agreed on clinical practice recommendations to optimize cardiovascular risk control in CML patients requiring ponatinib treatment.

Keywords: Chronic myeloid leukaemia; Ponatinib; Recommendations; Cardiovascular risk; Delphi analysis; Multidisciplinary panel

Abbreviations

3D: 3-Dimensional; ASA: Acetylsalicylic Acid; DOACs: Direct-Acting Oral Anticoagulants; CVA: Cerebrovascular Accident; TIA: Transient Ischaemic Attack; ARA-II: Angiotensin II Receptor Antagonists; anti-Xa: Anti-Activated Factor X; GLP-1 RA: GLP-1 Receptor Agonist; VKA: Vitamin K Antagonist; BCG: Bacillus Calmette-Guérin; BCRP: Breast Cancer Resistance Protein; BNP: Brain or B-type Natriuretic Peptide; CHA2DS2-VASc: Ischaemic Stroke Risk Assessment Scale; HDL-c: High Density Lipoprotein Cholesterol; LDL-c: Low Density Lipoprotein Cholesterol; CTRCD: Cancer Therapy-Related Cardiac Dysfunction; CV: Cardiovascular; CVRFs: Cardiovascular Risk Factors; SD: Standard Deviation; DM: Diabetes Mellitus; PAD: Peripheral Arterial Disease; ECG: Electrocardiogram; CVD: Cardiovascular Disease; ELN: European LeukaemiaNet; VTD: Venous Thromboembolic Disease; AF: Atrial Fibrillation; LVEF: Left Ventricular Ejection Fraction; FGFR: Fibroblastic Growth Factor Receptor; GELMC: Spanish Chronic Leukemia...
and specific management recommendations in patients who are complications, so it is essential to establish prevention strategies with clinical activity against the T315I mutation [13]. The use of ponatinib to overcome resistance to other TKIs and is the only one approved [9-12].

Cardio-onco-hematology teams for their early prevention and control of TKIs are associated with an increased risk of cardiovascular complications and require the involvement of multidisciplinary teams of experts in hematology, cardiology, primary care, cardiovascular risk and clinical chemistry [20-21]. The main points that must be included in the initial medical history and physical examination are summarized in Table 1.

Introduction

The introduction of Tyrosine Kinase Inhibitors (TKIs) targeting the bcr-abl oncoprotein has revolutionized the management of patients with CML. Treatment with imatinib, the first BCR-ABL inhibitor, takes the 10-year survival rate to over 80%, significantly approaching that of the general population. However, the need for continued treatment and the adverse effects associated with the use of TKIs have a significant impact on patient quality of life and health systems [1]. Despite the significant therapeutic advancement provided by imatinib [1,2], a substantial proportion of patients develop resistance or intolerance to imatinib [3] and new TKIs are needed to maintain the therapeutic response [4-8]. New generations of TKIs are associated with an increased risk of cardiovascular complications and require the involvement of multidisciplinary cardio-onco-hematology teams for their early prevention and control [9-12].

Ponatinib is a third generation TKI specifically designed to overcome resistance to other TKIs and is the only one approved with clinical activity against the T315I mutation [13]. The use of ponatinib may be associated with an increased risk of cardiovascular complications, so it is essential to establish prevention strategies and specific management recommendations in patients who are candidates for ponatinib, in order to maximise its therapeutic benefits.

Objectives

The aim of the study was to obtain feedback from members of a multidisciplinary panel of experts on best clinical practices to reduce the risk of cardiovascular events and inappropriate treatment interruptions in patients with CML treated with ponatinib.

Participants and Methodology

This project was carried out by a multidisciplinary panel composed of three coordinators and ten specialist practitioners, using Delphi methodology. Appendix I describe the project phases, the methodology used and the characteristics of the participants.

Results

Section 1: Correlation between clinical trial data and actual practice

The difference between CV events in patients in the PACE study [14] and clinical practice records [15-18] was analyzed. Overall, clinical practice records appear to reflect a lower prevalence of adverse CV events of different grades, which appears to be associated with both younger ages and the more frequent use of ponatinib doses below 45mg. An important conclusion from clinical practice records is that the incidence of Cardiovascular Disease (CVD) increases with a longer follow-up period and in patients who have previously received more than two TKIs [15,18].

Section 2: Medical history and initial clinical evaluation

Initial assessment of the patient with CML makes it possible to establish an adequate CV monitoring and prevention protocol [20,21]. The main points that must be included in the initial medical history and physical examination are summarized in Table 1.

According to the latest recommendations issued by Spanish Chronic Myeloid Leukaemia Group, a multidisciplinary follow-up of patients treated with TKIs makes it possible to optimize prevention strategies. Baseline assessment helps stratify the risk of complications into low, intermediate, high or very high and establish patient-specific management indications [25,26]. In this multidisciplinary team it is essential to have the collaboration of specialists in hematology, cardiology, primary care, cardiovascular risk and clinical pharmacology [27].

Based on the available evidence, the panel makes the recommendations listed in Table 2.

<table>
<thead>
<tr>
<th>Medical history</th>
<th>Physical examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic illness: DM, AHT, dyslipidaemia [20,21].</td>
<td>Height, weight and BMI [24].</td>
</tr>
<tr>
<td>Personal and family history of previous CV diseases [20,21].</td>
<td>Blood pressure and heart rate [24].</td>
</tr>
<tr>
<td>Unhealthy habits: smoking, alcohol, diet, physical activity [20,21].</td>
<td>Determination of ABI [24].</td>
</tr>
<tr>
<td>Chronic treatments: due to interactions with TKIs [22].</td>
<td>Cardiopulmonary auscultation [24].</td>
</tr>
<tr>
<td>Haematological history and treatments received [23].</td>
<td>Peripheral pulses [24].</td>
</tr>
</tbody>
</table>

Table 1: Necessary parameters in the patient’s medical history and initial physical examination.

DM: Diabetes Mellitus; AHT: Arterial Hypertension; BMI: Body Mass Index; ABI: Ankle-Brachial Index.
Section 3: Laboratory and imaging tests

There is not yet any evidence as to which tests need to be performed in normal clinical practice, since there are no clinical trials that have specifically evaluated this; so the suggestions collected are based on a compilation of retrospective analyses and expert recommendations (Table 3).

With regard to the frequency of the aforementioned tests, a monthly evaluation of Blood Pressure (BP) and Cardiovascular Risk (CVR) with an evaluation of glucose and lipid metabolism [28,29] is recommended, in addition to a quarterly evaluation of glucose and lipid metabolism and ABI, and a chest X-ray and ECG if necessary [20,28,29].

Based on the available evidence, the panel makes the recommendations included in Table 4.

Section 4: CVR evaluation and prophylaxis strategies

While there are no validated specific prospective scales to estimate CVD risk in patients with CML who are candidates for ponatinib, the use of available scales makes it possible to optimize control objectives.
TIA: Transient Ischaemic Attack; CVRFs: Cardiovascular Risk Factors.

Table 5: Cardiovascular risk stratification groups established by SCORE.

<table>
<thead>
<tr>
<th>Risk</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very high</td>
<td>Documented CVD: AMI, ACS, angina, stroke or TIA, peripheral arterial disease, coronary or arterial revascularization.</td>
</tr>
<tr>
<td></td>
<td>DM with target organ damage (e.g. proteinuria); DM with 3 or more associated major CVRFs (smoking, dyslipidaemia and hypertension), or type 1 DM of more than 20 years' duration.</td>
</tr>
<tr>
<td></td>
<td>Stage IV CKD (eGFR<30mL/min/1.73 m²).</td>
</tr>
<tr>
<td></td>
<td>SCORE calculated ≥10%.</td>
</tr>
<tr>
<td></td>
<td>Family history of hypercholesterolemia with CVD or 1 major associated CVRF.</td>
</tr>
<tr>
<td>High</td>
<td>Very high major CVRF (i.e. marked dyslipidaemia (Total Col >300, LDL >190) or severe hypertension (180/110 mmHg)).</td>
</tr>
<tr>
<td></td>
<td>DM with a major CVRF or of longer than 10 years.</td>
</tr>
<tr>
<td></td>
<td>CKD stage III (eGFR 30–59 mL/min/1.73 m²).</td>
</tr>
<tr>
<td></td>
<td>SCORE calculated ≥5% and <10%.</td>
</tr>
<tr>
<td></td>
<td>Family history of hypercholesterolemia without CVD or CVRF.</td>
</tr>
<tr>
<td>Moderate</td>
<td>SCORE calculated ≥1% and <5%.</td>
</tr>
<tr>
<td>Low</td>
<td>SCORE <1%.</td>
</tr>
</tbody>
</table>

TIA: Transient Ischaemic Attack; CVRFs: Cardiovascular Risk Factors.

Table 6: Consensus recommendations for the evaluation of CVR and prophylaxis strategies in the candidate patient for ponatinib or in its follow-up.

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Level of consensus</th>
<th>Level of agreement*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular risk must be quantified with SCORE tables in all ponatinib candidates and vascular disease must be actively ruled out.</td>
<td>Consensus</td>
<td>Agreement</td>
</tr>
<tr>
<td>High risk patients are those with SCORE >5% or ≥65 years, with DM, moderate or severe chronic kidney disease and/or previous clinical or subclinical cardiovascular disease.</td>
<td>Consensus</td>
<td>Agreement</td>
</tr>
<tr>
<td>The administration of ASA 100 mg/day as a primary prophylaxis in low cardiovascular risk patients treated with ponatinib is not recommended as there is no evidence of benefit in this scenario.</td>
<td>Consensus</td>
<td>Agreement</td>
</tr>
</tbody>
</table>

*Based on a Likert scale assessment: disagreement 1 to 3, neither disagreement nor agreement 4 to 6 and agreement 7 to 9.

and to standardize clinical practice in this patient profile.

Specifically, SCORE risk tables make it possible to estimate the risk of cardiovascular mortality at 10 years in patients without known cardiovascular disease, based on various risk factors: age, sex, systolic blood pressure, smoking and total cholesterol [23] (Table 5).

It should be noted that in a small registry (n=85) patient with CML and a SCORE >5% have been observed to be at increased risk of occlusive arterial events during ponatinib treatment [19]. Likewise, real-life studies with ponatinib have shown that patients mostARA likely to develop treatment-derived CV complications are those ≥65 years of age (relative risk (RR): 1.8) and with a history of AHT (RR: 3.2), DM (RR: 2.5) or ischaemic heart disease (RR: 2.6) [30,31], so during treatment these factors must be closely monitored for adequate CVR assessment.

With regard to the prevention of cardiovascular toxicity due to ponatinib, there are currently no published clinical trials supporting the use of any drug as a prophylactic strategy. In the general population without clinical or subclinical cardiovascular disease, the use of Acetylsalicylic Acid (ASA) has not shown any benefit in primary prevention but an increased risk of bleeding [32], although the proportion of patients with CML without prior cardiovascular disease has been shown to be low in patients who are candidates for ponatinib [16]. There is also no data from clinical trials on the control of risk factors during prospective follow-up of the treatment, so the premise that strict control of CVR and adherence to clinical practice guidelines on the management of different heart diseases improves the overall prognosis of patients [33] is extended to patients who are candidates for ponatinib.

Based on the available evidence, the panel makes the recommendations included in Table 6.

Section 5: Cardiovascular therapeutic goals in ponatinib candidates

In general, optimising the control of possible cardiovascular comorbidities must be adapted to clinical practice guidelines, favouring the use of drugs with a better CVR reduction profile.

Regarding AHT control, the latest update of the European guidelines recommends treating patients with BP levels >140/90 mmHg regardless of their cardiovascular risk. Thus, the objective to be achieved will be the reduction of BP <140/90 mmHg for all patients and, if treatment is well tolerated, ≤BP 130/80 mmHg values for the majority of patients [34]. Treatment must be based on lifestyle interventions and pharmacological treatment, and the initiation of treatment with angiotensin-converting enzyme inhibitor/ angiotensin II receptor antagonists (ACEI/ARA-II) and dihydropyridine calcium channel blockers is recommended [35].

Cholesterol target values vary depending on the CVR (Table 7), LDL-c control being the primary objective [36]. Pharmacological guidelines will be the same as in the general population, paying

Table 7: LDL control targets in patients who are candidates for TKIs.

<table>
<thead>
<tr>
<th>Risk</th>
<th>Lipid Control Objectives (LDL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very high</td>
<td><55mg/dL and ↓ 50% from baseline</td>
</tr>
<tr>
<td>High</td>
<td><70mg/dL and ↓ 50% from baseline</td>
</tr>
<tr>
<td>Moderate</td>
<td><100mg/dL</td>
</tr>
<tr>
<td>Low</td>
<td><115mg/dL</td>
</tr>
</tbody>
</table>
Table 8: Consensus recommendations for the cardiovascular therapeutic objectives in patients who are candidates for ponatinib or for its follow-up.

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Level of consensus</th>
<th>Level of agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is recommended that treatment be given to all patients with BP values >140/90mmHg, regardless of their cardiovascular risk, establishing as the first objective of pharmacological treatment the achievement of BP values <140/90mmHg without producing hypotension.</td>
<td>Consensus</td>
<td>Agreement</td>
</tr>
<tr>
<td>Antihypertensive treatment must be based on lifestyle interventions and pharmacological treatment, if being advisable to initiate treatment with ACEI/ARA-II and dihydropyridine calcium channel blockers.</td>
<td>Consensus</td>
<td>Agreement</td>
</tr>
<tr>
<td>Target cholesterol values vary depending on the patient’s cardiovascular risk, (Table 7).</td>
<td>Consensus</td>
<td>Agreement</td>
</tr>
<tr>
<td>With regard to lip-lowering treatment, the same guidelines must be followed as in the general population, taking special care with P450 CYP3A4 drug interactions and binding to Pgps and BCRP transport proteins, so the use of pitavastatin and ezetimibe is recommended due to their lower risk of interactions.</td>
<td>Consensus</td>
<td>Agreement</td>
</tr>
<tr>
<td>The overall glycaemic control target in ponatinib candidate patients is HbA1c <7% and may be considered more strictly (HbA1c <6.5%) in a selected population (short-duration or lifestyle treated DM or metformin only, long life expectancy or without significant cardiovascular disease) and less strict (HbA1c <8%) in frail patients.</td>
<td>Consensus</td>
<td>Agreement</td>
</tr>
<tr>
<td>A patient-centered approach must be taken to guide the choice of pharmacological agents, the use of SGLT-2i or GLP-1 RA being recommended in patients with DM2 and established cardiovascular disease, due to their demonstrated benefit on cardiovascular function.</td>
<td>Consensus</td>
<td>Agreement</td>
</tr>
</tbody>
</table>

Table 9: VTD treatment strategies recommended in cancer patients.

<table>
<thead>
<tr>
<th>Full dose LMWH</th>
<th>Duration of treatment (long-term treatment phase): LMWH minimum 3 months (6 months desirable for cancer), after which the possibility of extended treatment will be assessed.</th>
<th>Level of consensus</th>
<th>Level of agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individualize discontinuation of treatment: maintain LMWH until completion of curative treatment or as long as risk factors for VTD recurrence persist. If there is a recurrence of VTD with LMWH: increase the dose and optimize anti-Xa control. Consider an inferior vena cava filter for pulmonary embolism.</td>
<td>Consensus</td>
<td>Agreement</td>
<td></td>
</tr>
</tbody>
</table>

If the patient has platelet levels >50,000 platelets/mm³, as they have fewer thrombotic relapse rates than vitamin K antagonists. Anti-Xa: Anti-Activated Factor X

Table 10: Consensus recommendations for the prevention of VTD in candidate patients for ponatinib or in its follow-up.

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Level of consensus</th>
<th>Level of agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routine prophylaxis with anticoagulant therapy is not recommended in patients treated with ponatinib with no other prothrombotic risk factors susceptible to prophylaxis for associated VTD.</td>
<td>Consensus</td>
<td>Agreement</td>
</tr>
<tr>
<td>In case of elective surgery ponatinib should be suspended 7 days before surgery and resumed when no bleeding risk is envisaged (approximately 1-3 days).</td>
<td>Consensus</td>
<td>Agreement</td>
</tr>
<tr>
<td>Ponatinib must be suspended in patients with venous thromboembolism until resolution of the event, avoiding the administration of vitamin K antagonists due to the increased risk of interactions, and preferably considering the use of low-molecular-weight heparins or direct-acting oral anticoagulants (rivaroxaban and edoxaban).</td>
<td>Consensus</td>
<td>Agreement</td>
</tr>
<tr>
<td>The concomitant use of ASA in patients who are candidates for surgery must be assessed; therefore, in those patients at low/moderate risk, interruption is recommended and ASA must be restricted in high-risk patients to a maximum dose of 100mg/day.</td>
<td>Consensus</td>
<td>Agreement</td>
</tr>
<tr>
<td>It is recommended that all patients being considered for ponatinib treatment be assessed by an angiologist/vascular surgeon and an (onco) cardiologist prior to initiation of the treatment. During the subsequent follow-up of patients who have previously presented with VTD, it is recommended that limb Doppler scans be performed. During the subsequent follow-up of patients who have previously had VTD, it is recommended that D-dimer levels be determined at the end of treatment to assess the possible risk of recurrence.</td>
<td>Consensus</td>
<td>Agreement</td>
</tr>
</tbody>
</table>

Based on a Likert scale assessment: disagreement 1 to 3, neither disagreement nor agreement 4 to 6 and agreement 7 to 9. *There is consensus that the panelists disagree. There was no majority in agreement or disagreement.

particular attention to interactions due to P450 CYP3A4 and binding to Permeability glycoprotein (Pgp) and Breast Cancer Resistance Protein (BCRP) transport proteins [37].

The ADA/EASD consensus advocates an HbA1c target ≤7% except in frail patients or patients with multiple comorbidities where targets may be more lenient (8%) [38]. A patient-centred approach must be employed to guide the choice of pharmacological agents, prioritising the use of Sodium-Glucose Co-Transporter Type 2 inhibitor (SGLT-2) inhibitors or GLP-1 receptor agonist (GLP-1 RA); for patients with established CVD, given their demonstrated cardiovascular benefit [39].

Based on the available evidence, the panel makes the recommendations included in Table 8.

Section 6: Multidisciplinary approach and collaboration with other specialties

Clinical trials with ponatinib followed up over two years have shown a 6% incidence of venous thromboembolic disease (VTD), possibly related to the potent inhibition of tyrosine kinases and vascular endothelial growth factor receptor (VEGFR1-3), fibroblastic growth factor receptor (FGFR) and platelet-derived growth factor receptor (PDGFR) receptors [29], leading to the definition of specific recommendations in this regard in the Summary of Product Characteristics [13].

Regarding the risk of VTD, ponatinib has not been shown to be a risk factor per se and therefore the routine use of anti-thrombotic prophylaxis is not recommended [40]. However, the association with another risk factor (e.g. hereditary predisposition, comorbidity associated with the tumour process, treatment with immunomodulators, etc.) will make it necessary to consider the benefit/risk ratio of this strategy, following the same guidelines as for any cancer patient [27].

Treatment of any VTD arising during treatment with ponatinib must be associated with an assessment of the possible discontinuation of treatment or dose optimisation to minimise vascular toxicity without compromising efficacy [20,29], as the cardiovascular toxicity of ponatinib has been shown to be dose-dependent [13]. In the event of the onset of VTD during treatment, it is recommended that ponatinib be suspended until resolution of the event and that the indications in Table 9 [27] be followed, prioritising the use of Low Molecular...
Table 12: Consensus recommendations for the management of pre-existing and emerging cardiovascular problems in patients who are candidates for ponatinib or in its follow-up.

<table>
<thead>
<tr>
<th>Laboratory tests</th>
<th>Recommendation</th>
<th>Level of consensus</th>
<th>Level of agreement*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A baseline echocardiogram is recommended, and quantification of 3D LVEF whenever this is available. If the LVEF at follow-up falls more than 10% below baseline and below normal values, the study will need to be repeated in 2-3 weeks and, if this is confirmed, the patient must be referred to cardio-oncology.</td>
<td>Left ventricular GLS is a more sensitive and reproducible marker than LVEF for subclinical changes in left ventricular function, so it can be useful in anticipating dysfunction.</td>
<td>Consensus</td>
<td>Agreement</td>
</tr>
<tr>
<td>The role of troponin is not well established, and is therefore not recommended as a routine test.</td>
<td>The use of MRI is only recommended if there is uncertainty in the echocardiographic examination.</td>
<td>No consensus</td>
<td>Agreement</td>
</tr>
</tbody>
</table>

3D: 3-Dimensional; LVEF: Left Ventricular Ejection Fraction; GLS: Global Longitudinal Strain.

Based on Likert scale assessment: disagreement 1 to 3, neither disagreement nor agreement 4 to 6 and agreement 7 to 9. STEMI: ST Elevation Myocardial Infarction; NSTEMI: Non-ST Segment Elevation Myocardial Infarction.

Weight Heparin (LMWH) or Direct-Acting Oral Anticoagulants; (DOACs) over vitamin K antagonists.

Conversely, ponatinib has been shown to act as a platelet antagonist, inducing thrombocytopenia and platelet dysfunction [41]. In a series of 80 patients, an incidence of 11% of bleeding events was reported; however, none of them compromised safety; caution is recommended in the management of patients with antithrombotic therapy or observed thrombocytopenia [42]. Taking these data into account, the concomitant use of ASA should be carefully evaluated, as well as the ponatinib regimen in both elective and emergency surgery, with platelet transfusion being evaluated in the latter case.

Given its increased CVR compared with its analogues, the indication of ponatinib should result in referral to a specialist in Angiology and Vascular Surgery and a Cardiologist or Cardio-Oncologist prior to initiation of treatment. These specialists must perform an adequate assessment of the CVR associated with the drug, as well as its possible management during treatment [9], through an adequate baseline assessment, the establishment of thromboembolic prophylaxis in the indicated cases, treatment for primary prevention in cases of the concurrence of one or more CVRFs and secondary prevention in cases of diagnosis of CV disease and adequate long-term patient follow-up.

Based on the available evidence, the panel makes the recommendations included in Table 10.

Section 7: Management of pre-existing and emerging cardiovascular problems

CML and the Treatments Applied (TKIs) can affect cardiac function [43], so signs and symptoms of CV disease should be monitored and CVRFs actively sought, with a view to emphasising the importance of prevention. For this, in addition to the clinical interview, we have certain diagnostic tests that may be useful in the early identification of patients who will go on to develop cardiac dysfunction [11,20] (Table 11).

The approach with a patient who develops systolic dysfunction following ponatinib treatment is the treatment of systolic heart failure, i.e. initiating ACEI/ARA-II and beta-blockers as soon as practicable. If the patient develops decompensated heart failure, intravenous diuretic therapy (usually furosemide) to control symptoms and acute phase treatment must be initiated, resuming basic treatment as soon as possible.

In patients with atrial fibrillation it is recommended that the same risk scores as in the general population be used, i.e. anticoagulate if patients have CHA2DS2-VASc≥2, and consider high bleeding risk if HAS-BLED ≥3.

Given the risk of thrombocytopenia in cancer patients, anticoagulation is not recommended in patients with less than 50,000 platelets, despite being indicated by CHA2DS2-VASc.

In patients with atrial fibrillation it is recommended that the same antithrombotic treatment as before be continued; if INR control is difficult or the patient experiences embolic or bleeding events, it is recommended that direct-acting oral anticoagulants be initiated.

In patients with a history of STEMAT, NSTEMI, coronary revascularisation surgery or an ischaemic cerebrovascular event, secondary prophylaxis with antiplatelet agents is recommended in accordance with the recommendations in the available clinical guidelines.

In patients with cardiac dysfunction it is not routinely recommended to perform troponin determination, as its role is not well established in this context.

The treatment of a patient who develops systolic dysfunction following ponatinib treatment must include the treatment of systolic heart failure, i.e. the administration of ACEI/ARA-II and beta-blockers as soon as practicable. If the patient develops decompensated heart failure, intravenous diuretic therapy (usually furosemide) to control symptoms and acute phase treatment must be initiated, resuming basic treatment as soon as possible.

In the patient with atrial fibrillation it is recommended that the same risk scores as in the general population be used, i.e. anticoagulate if patients have CHA2DS2-VASc≥2 and consider high bleeding risk if HAS-BLED ≥3.

Weight Heparin (LMWH) or Direct-Acting Oral Anticoagulants; (DOACs) over vitamin K antagonists.

Conversely, ponatinib has been shown to act as a platelet antagonist, inducing thrombocytopenia and platelet dysfunction [41]. In a series of 80 patients, an incidence of 11% of bleeding events was reported; however, none of them compromised safety; caution is recommended in the management of patients with antithrombotic therapy or observed thrombocytopenia [42]. Taking these data into account, the concomitant use of ASA should be carefully evaluated, as well as the ponatinib regimen in both elective and emergency surgery, with platelet transfusion being evaluated in the latter case.

Given its increased CVR compared with its analogues, the indication of ponatinib should result in referral to a specialist in Angiology and Vascular Surgery and a Cardiologist or Cardio-Oncologist prior to initiation of treatment. These specialists must perform an adequate assessment of the CVR associated with the drug, as well as its possible management during treatment [9], through an adequate baseline assessment, the establishment of thromboembolic prophylaxis in the indicated cases, treatment for primary prevention in cases of the concurrence of one or more CVRFs and secondary prevention in cases of diagnosis of CV disease and adequate long-term patient follow-up. Based on the available evidence, the panel makes the recommendations included in Table 10.

Section 7: Management of pre-existing and emerging cardiovascular problems

CML and the Treatments Applied (TKIs) can affect cardiac function [43], so signs and symptoms of CV disease should be monitored and CVRFs actively sought, with a view to emphasising the importance of prevention. For this, in addition to the clinical interview, we have certain diagnostic tests that may be useful in the early identification of patients who will go on to develop cardiac dysfunction [11,20] (Table 11).

The approach with a patient who develops systolic dysfunction following ponatinib treatment is the treatment of systolic heart failure, i.e. initiating ACEI/ARA-II and beta-blockers as soon as possible, as well as the possible addition of potassium-sparing diuretics (e.g. eplerenone, spironolactone). If the patient develops decompensated heart failure, intravenous diuretic therapy should be initiated, resuming background therapy as soon as possible [11,27].

On the other hand, the European Cardio-Oncology guidelines indicate that the thrombotic-haemorrhagic risk balance could be modified in the presence of cancer [11]. However, at the moment there are no specific risk scales for cancer patients, so in practice the risk prediction scales CHA2DS2-VASc and HAS-BLED validated...
for the general population are used [44]. Similarly, the European clinical practice guidelines for the management of Atrial Fibrillation (AF) make no distinction in patients with concomitant oncological pathology, applying the same criteria as in the general population for the use of antithrombotic treatment [45]. As to which anticoagulant drug should be used in patients with AF and CML treated with ponatinib, the recommendations are not yet clear. Vitamin K antagonists do not seem to be an appropriate option, due to a possible alteration of International Normalized Ratio (INR) by interaction with treatment, so the use of LMWH is more frequent. In this regard, the use of antithrombotic treatment [45]. As to which anticoagulant drug should be used in patients with AF and CML treated with ponatinib, the recommendations are not yet clear. Vitamin K antagonists do not seem to be an appropriate option, due to a possible alteration of International Normalized Ratio (INR) by interaction with treatment, so the use of LMWH is more frequent. In this regard, it must be borne in mind that in the PACE study patients with peripheral arterial disease (PAD) in up to 30% of cases, so it is recommended that these guidelines do not include the assessment of other specialists. The European LeukemiaNet: guidelines available at the time of analysis conclude that there is no absolute contraindication to using any particular TKI, indicating that the use of ponatinib is not advisable in patients with any level of PAD and ponatinib should be used with caution in those with ischaemic heart disease or prior cerebral ischaemia, given its increased vascular risk [14]. However, these guidelines do not include the assessment of other specialists.

It must be borne in mind that in the PACE study patients with significant or active CVD were excluded, specifically mentioning congestive heart failure, acute myocardial infarction (AMI) or unstable angina in the previous 3 months. Likewise, 30% of patients with CP-CML developed arterial ischaemia of any type after 5 years, and the history of previous ischaemia was responsible for a 2.65 fold increase in the risk of an arterial event with ponatinib. Additionally, the probability of developing severe cardiac events at 5 years was 12%, and 10% and 11% for cerebral and peripheral events, respectively [14]. However, we do not have the actual mortality data for ponatinib patients treated in the PACE study with previous ischaemic artery disease, which means that we must rely on extrapolations.

Based on the available evidence, the panel makes the recommendations included in Table 14.

Section 8: Dose adjustment as approved by regulatory agencies

In 81% of patients chronic phase CML (CP-CML) included in the PACE trial it was necessary to reduce the dose due to the appearance of toxicity, however, after the dose reduction 96% of patients maintained major cytogenetic response [14]. A predictive model that took into account the influence of dose on the occurrence of thrombotic events demonstrated that every 15 mg/day of ponatinib dose reduction resulted in a 33% decrease in the risk of an arterial occlusive event [50]. These results indicate the need to act to reduce the incidence of thrombosis, especially arterial thrombosis, and several factors are recommended when selecting the starting dose (Table 13).

The European LeukemiaNet: guidelines available at the time of analysis conclude that there is no absolute contraindication to using any particular TKI, indicating that the use of ponatinib is not advisable in patients with any level of PAD and ponatinib should be used with caution in those with ischaemic heart disease or prior cerebral ischaemia, given its increased vascular risk [14]. However, these guidelines do not include the assessment of other specialists.

Based on the available evidence, the panel makes the recommendations included in Table 14.
It has been observed that about 20-30% of adverse drug reactions are caused by drug-drug interactions, in addition to other interactions with food, nutritional supplements, medicinal plants, excipients or environmental factors [51]. In addition, although numerous studies reveal the high prescription of TKIs with drugs susceptible to interaction, which can increase toxicity by up to 74%, epidemiological data describing the clinical significance are very limited [52]. Although drug-drug interactions that affect the therapeutic effect of ponatinib are not expected, given the specificity of its binding site, increasing the consumption of fiber and whole meal products; regular exercise, adapted to what is possible for the patient; and smoking cessation. It is recommended that the lifestyle promoted is one based on a healthy diet in the form of restricting the intake of saturated fatty acids to <10% of the total caloric intake by replacing them with polyunsaturated fatty acids, consuming salt <5g/day and increasing the consumption of fiber and whole meal products; regular exercise, adapted to what is possible for the patient; and smoking cessation.

Patient counseling must be individualized and decision-making shared between patient and healthcare professional, exploring their knowledge, concerns and expectations in order to achieve adequate engagement and motivation. Consensus Agreement

Based on a Likert scale assessment: disagreement 1 to 3, neither disagreement nor agreement 4 to 6 and agreement 7 to 9.

Section 10: Lifestyle and patient education

As already discussed, TKI therapy leads to an increase in intrinsic CVR, so non-pharmacological cardiotoxicity prevention measures need to be implemented in all patients, regardless of their treatment regimen. These measures must include the promotion of a healthy lifestyle, understood as observance of a balanced diet, regular exercise, adequate body weight control and cessation of smoking, as well as strict identification and control of CVRFs before, during and after treatment [25]. When it comes to dietary patterns, the available European guidelines agree that a Mediterranean diet is the most appropriate in our context [59]. With regard to physical activity, aerobic exercise is recommended, for 150 minutes/week if the exercise is of moderate intensity, or for 75 minutes/week in the case of more vigorous activity. However, shorter exercise sessions may also be appropriate for patients who are unable to meet these requirements [24], as may be the case for patients undergoing oncology therapy.

The timing of oncology diagnosis can be a good opportunity for encouraging patients to change their lifestyle and promote healthier habits, as fear of side effects from therapy or possible relapse greatly increases the patient’s willingness to listen to nutrition and lifestyle advice [60].

Based on the available evidence, the panel makes the recommendations included in Table 17.

A summary of CV risk management recommendations in patients...
with CML before and during treatment with ponatinib is provided in Table 18.

Discussion and Conclusions

The emergence of TKIs, and especially of more recent molecules such as ponatinib, has meant a significant advance in the treatment of CML. However, the cardiovascular complications of these agents remain a clinically relevant concern [61]. In this context, exploratory work has recently begun on what mechanisms underlie this damage, as well as on its proper identification, prevention and management in patients who are candidates for ponatinib [62,63].

As part of this new knowledge, the analysis of the results obtained in this document shows a high degree of agreement among the various specialists who made up the panel of experts, which meets one of the fundamental premises of its approach, i.e. the need
for a multidisciplinary approach to the patient. Thus, for most of the assertions, statistical consensus was reached, and the internal consistency was high in virtually all thematic sections.

Regarding those statements for which statistical consensus were not reached, the experts consider it necessary to make certain clarifications. Regarding the safety of ponatinib in real life, they highlight that the incidence of CVD is indeed lower than that shown in clinical trials [6,9,15-18]; however, more time is needed to confirm this trend. On the other hand, although the oncology pharmacist must monitor analytical data and possible toxicities and interactions, this function must not rest solely with this person, but must be a shared responsibility with the other specialists involved. Regarding the subsequent follow-up of patients who have previously presented Venous Thromboembolism (VTE) once treatment with ponatinib was established, experts recommend performing a limb Doppler scan, in addition to determining D-dimer levels, on conclusion of the procedure, to assess the possible risk of recurrence; however, it is recommended as a suggestion and it remains at the discretion of the clinical judgment of the specialist in charge of the patient’s development. Finally, although it is recognised that troponin is a cardiac damage marker with high sensitivity and specificity [64], in the patient with cardiac dysfunction it is not recommended for serial determinations, due to the current lack of clinical evidence in this context. On the other hand, it should be mentioned that a preliminary analysis of the OPTIC study, in which patients were randomized at a starting dose of 45mg versus 30mg (with subsequent reduction to 15 mg in the case of a response) and versus 15mg ponatinib, has shown a higher dose efficacy of 45mg without this resulting in a significant difference in cardiovascular events, even if there is a tendency in the dose dependent reduction of AOEs [65].

Taking into account the evidence described, experts conclude that ponatinib is a valuable drug for combating resistance to all other TKIs and should not be stopped for fear of vascular toxicities. We believe that, based on the best available evidence, applying these recommendations to normal clinical practice supports this as a manageable therapeutic option. We hope that these recommendations, coupled with dose adjustment, such as the one performed in the OP TIC study, will increase the benefit/risk ratio of ponatinib treatment, which will allow a substantial improvement in the approach to the disease and the quality of life of patients with CML.

Acknowledgements

This work was supported by Incyte Biosciences Iberia S.L.A.

The project is endorsed by the cardio-oncology working group of the Spanish Society of Cardiology (SEC)

The project is endorsed by the Spanish Society of Haematology and Haemotherapy (SEHH)

The project is endorsed by the Spanish Society of Thrombosis and Haemostasis (SETH).

References

