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Abstract 

Background and Aim: Chronic Kidney Disease (CKD) is a condi-
tion where the kidneys gradually lose their ability to function prop-
erly over time. It is into stages based on the severity of kidney dam-
age and the level of kidney function. The objective of our study is 
to employ machine learning models for the prediction of Chronic 
Kidney Disease (CKD) progression.

Methods: Our study is centered on the prediction of CKD pro-
gression from mild (I, II, III) to advanced stages (IV, V, VI). We utilized 
logistic regression with a lasso-penalized approach and random for-
est model for our predictive analysis. We assessed the significance 
of features using the Gini index derived from the random forest 
model. The performance of our models was evaluated based on 
the Area Under Receiver Operating Characteristic (AU-ROC), AU-
Precision-Recall (PR) curves, recall, precision and accuracy.

Results: Our study showcases remarkable predictive perfor-
mance of CKD progression from milder (I, II, III) to severe stages (IV, 
V, VI). Random forest model achieved an accuracy of 85%, a recall 
rate of 86%, a precision rate of 83%, an AU-ROC score of 92%, and 
an AU-PR score of 83%. The logistic regression model exhibited an 
accuracy of 84%, a recall rate of 84%, a precision rate of 85%, an 
AU-ROC score of 92%, and an AU-PR score of 81%. Regarding vari-
able importance, our model identifies creatinine as the most criti-
cal feature, followed by eGFR.

Conclusion: Our findings indicate that machine learning mod-
els hold promise in predicting CKD progression with substantial 
discriminative capabilities, as evidenced by high AUROC curves. 
This suggests their potential utility in real-world clinical settings 
for identifying patients at risk of transitioning from mild to severe 
stages of CKD.

Keywords: Chronic Kidney Disease; Machine Learning; Logistic 
Regression; Random Forest; Classification ModelIntroduction

In 2013, the toll of Chronic Kidney Disease (CKD) claimed the 
lives of approximately one million individuals [1]. This burden 
disproportionately afflicts the developing world, where low to 
middle-income nations bear the weight of 387.5 million CKD 
cases, comprising 177.4 million male patients and 210.1 million 
female patients [2]. These statistics underscore the pervasive 
nature of CKD within developing regions, and the prevalence 
continues to surge.Chronic Kidney Disease (CKD) stands as a 
significant medical issue affecting numerous individuals world-
wide. This condition entails the gradual deterioration of kidney 

function, leading to a reduced capacity to efficiently filter waste 
and excess fluids from the bloodstream, a process vital for urine 
production [3]. The term "chronic" is applied due to the slow, 
often extended, progression of this damage. CKD's global im-
pact underscores its status as a pressing concern in healthcare, 
touching the lives of people across the globe. CKD represents a 
widespread and severe medical condition [4], characterized by 
a gradual decline in kidney function, a process that typically un-
folds over months to years [3]. One distinguishing aspect of CKD 
is its silent nature, with symptoms often remaining latent until 
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the disease reaches advanced stages [5]. One distinguishing as-
pect of CKD is its silent nature, with symptoms often remaining 
latent until the disease reaches advanced stages.

In recent years, the adoption of Electronic Health Records 
(EHRs) has witnessed significant growth within healthcare sys-
tems [6]. This wealth of electronic health data has ushered in 
unprecedented opportunities for computational methodolo-
gies. These approaches not only serve to enhance our existing 
understanding of various medical conditions but also enable the 
development of predictive models for assessing patient risk. For 
instance, conditions like breast cancer [7] and myocardial infarc-
tion [8] have already witnessed successful modelling through 
the application of machine learning algorithms. Machine learn-
ing, a subfield of artificial intelligence, is dedicated to crafting 
algorithms that can discern patterns or relationships within a 
set of variables [9]. These algorithms are adept at predicting the 
value or outcome of an unknown variable based on the infor-
mation gleaned from historical data. In the realm of healthcare, 
machine learning models can be effectively harnessed to fore-
cast a patient's susceptibility to a particular disease by analyzing 
the wealth of information housed within their health records. 
Furthermore, the output of machine learning algorithms isn't 
merely a black box; it often provides insights that can be manu-
ally scrutinized. This examination aids in deciphering which 
specific variables play pivotal roles in indicating diverse patient 
outcomes. Extensive efforts have been dedicated to the early 
detection of CKD, to initiate treatment in its nascent stages.

The objective of your study is to employ machine learning 
algorithms, lasso penalized logistic regression [10] and random 
forests [11] in the context of prediction and risk factor analy-
sis for Chronic Kidney Disease (CKD) progression. Specifically, 
the focus is on forecasting the transition of CKD from its milder 
stages (I, II, III) to advanced, severe stages (IV, V, VI). The study 
seeks to enhance our comprehension of this progression phe-
nomenon across diverse disease stages. The potential ramifica-
tions of achieving this goal include the advancement of early 

intervention strategies and improvements in patient care within 
the context of CKD management. Through this empirical ex-
ploration, we anticipate unravelling deeper insights into the 
mechanisms governing CKD progression. These insights, in turn, 
have the potential to equip medical practitioners with tools to 
refine risk assessment, enabling more timely interventions and 
tailored patient care strategies. This study aspires to contribute 
substantively to the enhancement of clinical decision-making, 
ultimately leading to improved patient outcomes. This model 
will uncover the salient variables exerting the most significant 
influence on the transition process.

Related Studies 

Chronic Kidney Disease (CKD) is a pervasive and serious 
global health issue that poses a significant burden on health-
care systems. The condition is characterized by a gradual de-
cline in kidney function over time, with five stages ranging from 
mild to severe. As CKD advances, it can lead to complications 
like cardiovascular disease and End-Stage Renal Disease (ESRD), 
necessitating dialysis or kidney transplantation.

Leveraging machine learning and data mining methods, re-
searchers have embarked on a diverse range of studies aimed 
at extracting valuable insights from datasets related to Chronic 
Kidney Disease (CKD) [12]. The adoption of machine learning 
serves a twofold purpose: to streamline the analytical process, 
reduce time requirements, and enhance prediction accuracy 
through data mining categorization techniques [13]. Further-
more, the application of machine learning extends to the realms 
of disease diagnosis and treatment, encompassing a spectrum 
of medical conditions. Employing data-gathering techniques, a 
multitude of endeavors have been undertaken to extract valu-
able insights from CKD datasets. Numerous studies have been 
done using machine learning. 

Bemando et al. delved into an exploration of the intricate re-
lationship between blood-related diseases and their distinctive 
characteristics. Employing a range of classifier methods includ-
ing Gaussian Naive Bayes, Bernoulli Naive Bayes, and Random 
Forest, these researchers brought forth compelling insights. No-
tably, in their investigation, Naive Bayes exhibited remarkable 
accuracy, surpassing other algorithms [14]. In a distinct avenue 
of medical research, Kumar and Polepaka crafted an innovative 
approach to predict illnesses. Their arsenal included powerful 
tools like Random Forest and Convolutional Neural Networks 
(CNN), alongside other machine learning methodologies. These 
algorithms demonstrated notable prowess in classifying illness 
datasets, delivering precision, recall, and F1-score metrics of 
excellence. Intriguingly, Random Forest stood out, showcasing 
superior accuracy and statistical performance [15]. The pursuit 
of enhanced statistical analysis outcomes led Acharya et al. to 
navigate the landscape of medical-linked illness datasets. Em-
ploying a multifaceted approach that included Convolutional 
Neural Networks (CNN) and an array of machine learning al-
gorithms, they ventured into the realm of ECG datasets. Here, 
they achieved a commendable classification accuracy rate of 
94% [16]. In the domain of medical illness prediction, Desai et 
al. devised a sophisticated methodology. The author harnessed 
the capabilities of both back-propagation Neural Networks (NN) 
and Logistic Regression (LR) classification algorithms. These 
strategic choices yielded distinctive outcomes, with a compre-
hensive statistical analysis concluding that logistic regression 
outperformed other algorithms in terms of accuracy and pre-
dictive capabilities [17]. Patil et al. undertook the creation of a 
comprehensive database dedicated to ECG arrhythmia-related 

Figure 1: AU-ROC and AU-PR of the machine learning models. 

RBC: Red Blood Cell; ALP: Alkaline Phosphate; BUN: Blood Urea Ni-
trogen; CKD: Chronic Kidney Disease; PT: Prothrombin Time; eGFR: 
Estimated Glomerular Filtration Rate.
Figure 2: Feature importance from machine learning models.
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medical conditions. Within this endeavour, the researchers har-
nessed the potential of machine learning approaches, includ-
ing Support Vector Machine (SVM) and the ingenious Cuckoo 
Search-Optimized Neural Network. The results were impres-
sive, with the support vector machine yielding an enhanced ac-
curacy rate of 94.44% [18].

Methods

Data Source 

In this retrospective study, we conducted a comprehensive 
analysis using data sourced from the Medical Information Mart 
for Intensive Care (MIMIC) repositories. These repositories 
house a vast collection of de-identified health-related infor-
mation about critically ill patients admitted to the Beth Israel 
Deaconess Medical Center, a leading tertiary medical institution 
located in Boston, USA [19]. 

The dataset at our disposal encompasses a diverse range 
of variables, including demographic details, vital signs, labora-
tory results, prescription records, and clinical notes. These data 
sources offer invaluable insights into the profiles of critically ill 
patients.

For this investigation, we focused specifically on the lat-
est iteration of the MIMIC databases, namely MIMIC-III v1.4. 
This clinical database spans a timeframe from 2001 to 2012, 
incorporating data recorded through two distinct systems: 
MetaVision (iMDSoft, Wakefield, MA, USA) and CareVue (Phil-
ips Healthcare, Cambridge, MA, USA). It's noteworthy that the 
initial Philips CareVue system, which archived data from 2001 
to 2008, was subsequently succeeded by the more advanced 
MetaVision data management system. The MetaVision system 

continues to be actively employed for data management and 
analysis to this day.

Patients Population

The patients in this study were selected based on their ICD-
9 codes, which are a standardized way of categorizing medi-
cal conditions and diagnoses. In the context of Chronic Kidney 
Disease (CKD), the ICD-9 codes used in this study represented 
different stages of the disease. Among the patient cohort, 674 
individuals exhibited mild stages (I, II, III) of CKD, indicative of 
milder manifestations of this condition. Furthermore, a group 
of 1,286 patients received diagnoses reflecting severe stages 
(IV, V, VI) of CKD. The distribution of patients within these dis-
tinct categories is detailed in Table 1.

Model Construction Methods 

To assess the predictive capabilities of our models, we ad-
opted two distinct machine learning approaches: random for-
ests and logistic regression with a lasso-penalized approach.

Random forest models are well-regarded for their excep-
tional accuracy and robustness in handling high-dimensional 
data [20]. Moreover, they excel at capturing intricate nonlinear 
relationships within the data [21]. However, one challenge with 
random forests lies in their interpretability, which is often a crit-
ical factor in healthcare contexts. To address this concern, we 
extended our exploration to logistic regression models.

Logistic regression, although not naturally suited for high-
dimensional data, can be enhanced with a lasso-penalized ap-
proach. This lasso, or L1-regularization, incorporates a penalty 
term into the model's objective function. Its purpose is twofold: 
first, it penalizes features that provide only marginal informa-
tion, and second, it encourages the selection of a concise set 
of highly predictive features for the final model [22]. This strat-
egy is essential for achieving both comprehensible and accu-
rate models, especially when dealing with patient datasets con-
taining numerous unique features. Logistic regression without 
dimensionality reduction can yield suboptimal results in such 
complex scenarios.

The L1 or "lasso" penalty has gained widespread acceptance 
as an effective method for dimensionality reduction in regres-
sion. To validate the performance of our models, we employed 
leave-one-out cross-validation for both random forests and lo-
gistic regression. 

In the case of random forests, the models were constructed 
using the remaining 𝑘−1 folds of training data. We created 500 
decision trees for each forest and determined the number of 
features to consider at each split as the square root of the total 
number of features. Trees were grown until they reached leaf 
purity whenever possible. Additionally, we used a balanced ap-
proach when calculating the Gini gain for split decisions. This 
involved assigning greater weight to the lower class to balance 
their influence with the majority class.

In logistic regression analysis, we introduced an additional 
layer of internal cross-validation aimed at fine-tuning the pen-

Table 1: Description of the patient populations. 

Mild stages Severe stages

stage I stage II stage III stage IV stage V VI (ESRD)

ICD-9 Code 
(s)

585.1 585.2 585.3 585.4 585.5 585.6

# Cases 13 104 557 225 59 1,002

Total Patients Mild (n=674) Severe (n=1,286)
ESRD: End-Stage Renal Disease 
Table 2: Baseline characteristics.

CKD patients characteristic n=1,960

Age in years median (min. – max.) 69(20–88)

Gender (Male) n (%) 1,185(60)

Platelet (K/uL) median (IQR) 205(152.2–270.4)

RBC (m/uL) median (IQR) 3.27(3.00–3.59)

Albumin (g/dL) median (IQR) 3.10(2.82–3.35)

ALP (IU/L) median (IQR) 96.5(78.0–124.5)

Anion gap median (IQR) 15.76(13.7–18.0)

Chloride (mEq/L) median (IQR) 102(98.5–105.7)

Creatinine (mg/dL) median (IQR) 3.14(1.86–5.2)

Phosphate (mg/dL) median (IQR) 4.05(3.40–4.95)

Sodium (mEq/L) median (IQR) 138.6(136.2–140.7)

BUN (mg/dL) median (IQR) 43.24(30.7–59.4)

PT (s) median (IQR) 14.5(13.13–17.4)

eGFR (mL/min/1.73 m²) median (IQR) 17.93(10.2–32.8)

RBC: Red Blood Cell; ALP: Alkaline Phosphate; BUN: Blood Urea Nitrogen; CKD: 
Chronic Kidney Disease; PT: Prothrombin Time; eGFR: Estimated Glomerular 
Filtration Rate; IQR: Interquartile Range; mg/dL: Milligrams per Deciliter; IU/L: 
International Units per Litre; K/uL: Thousand per Microliter; m/uL: Million per 
Microliter, %: Percentage; min: Minimum; max: Maximum; mEq/L: Milliequiva-
lents per Liter; s: Seconds. Continuous values were recorded as median (IQR), 
and categorical values (absolute numbers and percentages).

Table 3: Classification Metrics from the Machine Learning Models.
Models Accuracy Recall Precision AU-ROC AU-PR

Random Forest Model 85 86 83 92 83

Logistic Regression 
Model

84 84 85 92 81

AU-ROC: Area Under Receiver Operating Characteristic; AU-PR: Area Under 
Precision-Recall
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alty coefficient for L1 regularization. This involved a multi-step 
process. We performed k − 1 round of internal cross-validation. 
Each round consisted of 1 tuning fold and k − 2 training folds. 
During this process, we explored 10 different penalty values 
distributed logarithmically between 10^-4 and 10^4. Evalua-
tion of these penalty values occurred within an internal cross-
validation layer. The optimal penalty value was chosen based 
on model performance, and assessed using a weighted accu-
racy metric. This metric ensured equal consideration of two 
outcome classes. For each external cross-validation fold, the 
remaining folds were utilized to determine the most suitable 
penalty value. A new predictive model was then trained using 
these selected folds. Finally, this model was evaluated on the 
original held-out fold.

It's important to note that, similar to our random forest 
models, logistic regression models also employed a balanced 
class weight approach to ensure fair treatment of both the two 
outcome classes. 

Furthermore, to enhance reliable generalization and reduce 
the risk of overfitting, we adopted a hybrid method that blends 
both holdout and cross-validation techniques. Our dataset was 
divided into separate segments: 80% for training purposes and 
20% for autonomous testing.

Model Evaluation Methods

In our model evaluation, we utilize established quantitative 
metrics such as Receiver Operating Characteristic (ROC) curves 
and Precision-Recall (PR) curves. These metrics provide a com-
prehensive assessment of model performance [23,24]. To ob-
tain predicted probabilities for each patient, we employ 𝑘-fold 
cross-validation. The final probability vector is constructed by 
combining these predictions while ensuring each patient's in-
clusion only once.

Our primary metrics of interest are the Area Under the ROC 
curve (AUC-ROC) and the area under the PR curve (AUC-PR). 
While both metrics are reported, we focus primarily on AUC-
ROC due to its robustness, particularly when dealing with im-
balanced class distributions [23].

For a qualitative evaluation, we examine the most influential 
features identified by our models. In the case of random forests, 
we apply the Gini importance method outlined by Breiman in 
1984 to assess feature importance [11]. This approach ensures 
a comprehensive evaluation of our models, maintaining meth-
odological integrity in alignment with established practices in 
the field.

Equation

The Glomerular Filtration Rate (GFR) was determined using 
a widely recognized formula known as the 4-variable Modifica-
tion of Diet in Renal Disease (MDRD-4) formula. This formula 
is employed to estimate the GFR, a crucial measure of kidney 
function. The MDRD-4 formula is expressed as follows:

MDRD-4 = 175 × (Scr)-1.154 × (Age)-0.203 × (0.742 if female) × 
(1.178 if black) [25]  where:

MDRD−4: The abbreviation for the 4-variable MDRD formula.

Age: Age of the individual in years.

Scr: Serum creatinine level in milligrams per deciliter (mg/
dL).

Gender: Gender of the individual (0.742 for females).

Ethnicity: Ethnicity of the individual (1.178 for individuals of 
black ethnicity).

This formula is employed to estimate GFR, a crucial measure 
of kidney function, based on these variables. It is particularly 
valuable in clinical settings for assessing kidney health and is 
widely accepted for its accuracy and reliability.

Results  

This study revolves around a dataset comprising 1,960 pa-
tients who received diagnoses of CKD. Among these individuals, 
674 were classified within the mild stages (I, II, III) of CKD, while 
the remaining 1,286 exhibited the severe stages (IV, V, VI) of the 
condition. In the study population, 1,185 (60%) were male par-
ticipants with a median age of 69 years, spanning an age range 
of 20 to 88 years, Table 2.

Machine Learning Models 

Overall, our study demonstrates exceptional predictive per-
formance in forecasting CKD progression from mild (I, II, III) to 
severe stages (IV, V, VI). Table 3 and Figure 1 provide detailed 
insights into the classification metric scores. In the case of the 
random forest model, we achieved an accuracy rate of 85%, a 
recall rate of 86%, a precision rate of 83%, an AU-ROC score of 
92%, and an AU-PR score of 83%. Conversely, the logistic regres-
sion model exhibited an accuracy rate of 84%, a recall rate of 
84%, a precision rate of 85%, an AU-ROC score of 92%, and an 
AU-PR score of 81%. Notably, random forests slightly outper-
form logistic regression across many of these metrics.

Variable Importance 

Random Forest feature importance is a valuable technique 
employed in Random Forest machine learning models to gauge 
the significance of input features. Its primary aim is to discern 
which features exert the most influence on the model's pre-
dictive outcomes. The applications of feature importance are 
multifaceted, encompassing tasks like gaining insights into the 
underlying dataset, making informed decisions about feature 
selection, and pinpointing potential determinants of the target 
variable. In this study, features are selected based on Gini im-
purity. This technique relies on the Gini impurity index to quan-
tify feature importance. It operates by scrutinizing each deci-
sion tree in the forest and noting the reduction in Gini impurity 
achieved when specific features are used to split nodes. Fea-
tures that lead to a notable reduction in impurity during node 
splitting are accorded higher importance. These techniques 
collectively offer a comprehensive understanding of feature im-
portance, aiding in model interpretation, selection, and overall 
comprehension of data dynamics. The most important feature 
in our model is creatinine followed by eGFR, anion gap, phos-
phate, chloride, Blood Urea Nitrogen (BUN), platelet, Red Blood 
Cell (RBC) etc, Figure 2.

Discussion 

In our study, we concentrated on predicting Chronic Kidney 
Disease (CKD), classifying stages I, II, and III as mild and stages 
IV, V, and VI as severe. Across various tasks and types of data, 
our observed impressive AU-ROC scores, often surpassing the 
0.8 threshold. These high scores attest to the exceptional qual-
ity of our models, highlighting their efficacy in predicting CKD. 
Considering the high mortality rate associated with CKD, early 
prediction stands as a crucial asset for healthcare professionals. 
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In this regard, both random forest and logistic regression mod-
els demonstrated comparable performance in identifying mild 
and severe CKD cases.

Furthermore, our study delved into the broader landscape 
of CKD progression. Leveraging machine learning algorithms, 
such as lasso penalized logistic regression and random forests, 
we embarked on a comprehensive exploration. It's noteworthy 
that random forests consistently outperformed logistic regres-
sion, mainly due to their superior ability to capture intricate 
data relationships [26]. This attribute makes them particularly 
valuable for CKD prediction. Our primary focus revolved around 
predicting CKD advancement and, notably, forecasting the tran-
sition from milder stages to severe phases. This research ven-
ture unveiled valuable insights into the factors contributing to 
CKD progression, offering a pioneering approach to early detec-
tion and intervention. These findings hold significant clinical rel-
evance, equipping healthcare practitioners with the means to 
identify high-risk patients at an earlier stage. This, in turn, facili-
tates targeted interventions, encourages lifestyle modifications, 
and tailors therapies to mitigate CKD progression. By embracing 
a multifaceted approach that combines machine learning prow-
ess with clinical acumen, our study marks a substantial stride 
forward in the quest to unravel and address the intricacies of 
CKD progression, ultimately striving to elevate the quality of 
care and the well-being of affected individuals.

In assessing variable importance, the top five (5) most influ-
ential features in our model to predict CKD progression from 
mild to severe is creatinine followed by eGFR, anion gap, phos-
phate, chloride, and blood urea nitrogen (BUN). 

The measurement of serum creatinine levels is a funda-
mental diagnostic tool in monitoring kidney health. As CKD 
progresses, creatinine levels tend to rise, signaling a decline in 
kidney function [27]. This elevation in creatinine is indicative of 
impaired Glomerular Filtration Rate (GFR) [28], a key parameter 
for assessing kidney function. Monitoring creatinine levels over 
time helps healthcare providers classify CKD into different stag-
es, ranging from mild (Stage 1) to severe (Stage 5 or end-stage 
renal disease).

eGFR is a critical parameter in the evaluation and manage-
ment of CKD [29]. It aids in diagnosis, staging, and monitoring, 
guiding treatment decisions and promoting better outcomes for 
individuals living with CKD [30]. Regular measurement of eGFR 
over time helps track the progression of CKD. A declining eGFR 
indicates worsening kidney function and may prompt more ag-
gressive management strategies to slow down disease progres-
sion.

The anion gap is a valuable parameter that can provide in-
sights into acid-base balance and the presence of metabolic 
acidosis, which are relevant considerations in the management 
of CKD. It is used to assess the body's acid-base balance by 
comparing the concentrations of positively charged ions (so-
dium and potassium) with negatively charged ions (chloride 
and bicarbonate) in the blood. In CKD, particularly in advanced 
stages, the kidneys may have difficulty maintaining the body's 
acid-base balance. An elevated anion gap can be an indicator of 
metabolic acidosis, a condition where there is an excess of acid 
in the body [31]. Regular monitoring of the anion gap is impor-
tant for healthcare providers to make informed treatment deci-
sions and optimize care for CKD patients. Furthermore, Blood 
Urea Nitrogen (BUN) is a clinically important parameter in the 
management of CKD. It provides valuable information about 

renal function, uremia, fluid and electrolyte balance, and dis-
ease progression [32]. Regular monitoring of BUN levels is an 
essential part of CKD care to ensure timely interventions and 
optimize patient outcomes.

Clinical relevance for Combining the Stages (I, II, III) and 
Stages (IV, V, VI)

The decision to group CKD Stages I to III and CKD Stages IV 
to VI in this study was based on a recognized clinical approach. 
The rationale behind this grouping is to distinguish between 
lower-risk stages (I, II, III) and higher-risk stages (IV, V, VI) of 
CKD. This division helps in studying the progression of CKD from 
relatively mild to more severe stages and understanding the 
factors that contribute to this transition. Furthermore, from a 
clinical perspective, the management and progression of CKD 
often involve the monitoring and intervention strategies that 
apply across all stages. For instance, interventions related to 
blood pressure control, medication management, and lifestyle 
modifications can be relevant to patients across various stages 
of CKD. Therefore, it makes sense to consider them collectively. 
CKD is characterized by a progressive decline in kidney function. 
Stages I, II, and III represent milder forms of kidney dysfunc-
tion, while stages VI, V, and VI signify more severe impairment. 
However, the progression from milder to severe stages is con-
tinuous and can be influenced by a variety of factors. Analyzing 
the entire spectrum together allows for a more comprehensive 
understanding of the disease's progression. In clinical practice, 
healthcare providers often need to assess a patient's risk of pro-
gressing to more severe stages of CKD. Combining the stages 
can help in developing predictive models that assist clinicians 
in identifying patients at higher risk of disease progression. De-
pending on the research objectives, combining stages can be 
practical. For instance, we aim to develop a predictive model for 
CKD progression, having a broader dataset that encompasses 
all stages can provide a more robust and generalizable model. 
Conducting separate analyses for each CKD stage can be re-
source-intensive, particularly if the dataset is limited. Combin-
ing stages can streamline the analysis process and make more 
efficient use of available resources. CKD is a complex condition 
influenced by various clinical, genetic, and lifestyle factors. In 
the real world, patients may transition between stages due to 
disease management and treatment. Therefore, analyzing the 
disease continuum captures this complexity more accurately.

Limitations and Future Research Recommendations

One limitation of this study is its exclusive focus on compar-
ing two specific machine learning algorithms, random forests, 
and logistic regression, for predicting CKD progression. While 
these models exhibit promising results, their performance may 
exhibit variations across different datasets and clinical contexts. 
To enhance the robustness and generalizability of predictive 
models, future research should consider the evaluation of ad-
ditional machine learning algorithms. Moreover, this study did 
not include some common risk factors, including genetic fac-
tors, lifestyle and environmental factors that could enhance 
predictive accuracy. Expanding the scope of features consid-
ered in subsequent studies can address this limitation. Another 
limitation stems from the retrospective nature of the study, 
relying on data from the MIMIC-III database. Although MIMIC-
III provides a valuable research resource, it presents inherent 
limitations, including potential data entry errors, missing data, 
and limited applicability to populations beyond the database. 
Consequently, the external validity of the models and their rel-
evance to diverse patient cohorts and healthcare settings may 
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be affected. To mitigate this limitation, future research should 
incorporate data from multiple sources to bolster the generaliz-
ability of predictive models and validate their performance in 
real-world clinical scenarios. 

Conclusion

Our findings showed that random forests tend to slightly 
outperform logistic regression, demonstrating a higher capabil-
ity for accurate CKD progression prediction. Furthermore, our 
models have leveraged common established risk factors associ-
ated with CKD progression, shedding light on the relationships 
between various stages of CKD. 

These discoveries highlight the potential utility of our mod-
els in clinical settings, where they could serve as valuable tools 
for identifying CKD patients at risk of transitioning from mild to 
severe stages. Our study lays the foundation for further explora-
tion and implementation of these models in real-world health-
care applications.
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